

Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S. A.

Krista Alejandra Sandoval Hernández

Asesorado por el Ing. Allan Emilio Maldonado Cordón Coasesorado por el Ing. Edwin José Saravia Cano

Guatemala, agosto de 2015

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL,
NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD
MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS,
EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S. A.

TRABAJO DE GRADUACIÓN

PRESENTADO A LA JUNTA DIRECTIVA DE LA FACULTAD DE INGENIERÍA
POR

KRISTA ALEJANDRA SANDOVAL HERNÁNDEZ

ASESORADO POR EL ING. ALLAN EMILIO MALDONADO CORDÓN COASESORADO POR EL ING. EDWIN JOSÉ SARAVIA CANO

AL CONFERÍRSELE EL TÍTULO DE

INGENIERA QUÍMICA

GUATEMALA, AGOSTO DE 2015

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA

NÓMINA DE JUNTA DIRECTIVA

VOCAL I Ing. Angel Roberto Sic García

VOCAL II Ing. Pablo Christian de León Rodríguez

VOCAL III Inga. Elvia Miriam Ruballos Samayoa

VOCAL IV Br. Narda Lucía Pacay Barrientos

VOCAL V Br. Walter Rafael Véliz Muñoz

SECRETARIA Inga. Lesbia Magalí Herrera López

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

DECANO Ing. Angel Roberto Sic García

EXAMINADOR Ing. Víctor Manuel Monzón Valdez

EXAMINADOR Ing. Erwin Manuel Ortiz Castillo

EXAMINADOR Ing. Gerardo Ordóñez

SECRETARIO Ing. Hugo Humberto Rivera Pérez

HONORABLE TRIBUNAL EXAMINADOR

En cumplimiento con los preceptos que establece la ley de la Universidad de San Carlos de Guatemala, presento a su consideración mi trabajo de graduación titulado:

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL,
NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD
MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS,
EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S. A.

Tema que me fuera asignado por la Dirección de la Escuela de Ingeniería Química, con fecha 24 de noviembre de 2014.

Krista Alejandra Sandoval Hernández

Ingeniero
Victor Monzón
Director
Escuela de Ingeniería Química
Facultad de Ingeniería
Universidad de San Carlos de Guatemala

Respetado Ing. Victor Monzón:

Por medio de la presente hago constar que he revisado y dado mi aprobación del diseño de investigación del Ejercicio Profesional Supervisado (E.P.S) titulado "DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S.A." de la estudiante de Ingeniería Química Krista Alejandra Sandoval Hernández quien se identifica con el carné número 2010-20388.

Sin otro particular me suscribo de usted.

Atentamente,

Allan Emilio Maldonado Cordón Ingeniero Químico Colegiado No. 1490

Ing. Qco. Allan Emilio Maldonado Cordón Colegiado No.1490

Asesor

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Guatemala, 06 de julio de 2015. Ref.EPS.DOC.438.07.15.

Ing. Silvio José Rodríguez Serrano Director Unidad de EPS Facultad de Ingeniería Usac.

Ing. Rodríguez Serrano:

Por este medio atentamente le informo que como Asesor-Supervisor de la Práctica del Ejercicio Profesional Supervisado (E.P.S.), de la estudiante universitaria Krista Alejandra Sandoval Hernández de la Carrera de Ingeniería Química, con carné No. 201020388, procedí a revisar el informe final, cuyo título es "DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA)Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S.A.".

En tal virtud, LO DOY POR APROBADO, solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atentamente,

"Id y Enseñad a Todos"

Ing. Miguel Lemus Asesor-Supervisor de EPS

Área de Ingeniería Química

c.c. Archivo ML/ra Facultad de Inge

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Guatemala, 06 de julio de 2015. Ref.EPS.D.310.07.15.

Ing. Victor Manuel Monzón Valdéz Director Escuela de Ingeniería Química Facultad de Ingeniería Presente

Estimado Ingeniero Monzón Valdéz.

Por este medio atentamente le envío el informe final correspondiente a la práctica del Ejercicio "DETERMINACIÓN (E.P.S) titulado Profesional Supervisado, COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA)Y TIEMPO DE FUNCIÓN AL TIEMPO DE MECÁNICA (MST) EN **ESTABILIDAD** ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX S. A." que fue desarrollado por la estudiante universitaria Krista Alejandra Sandoval Hernández, quien fue debidamente asesorada y supervisada por el Ingeniero Ing. Miguel Lemus.

Por lo que habiendo cumplido con los objetivos y requisitos de ley del referido trabajo y existiendo la aprobación del mismo por parte del Asesor-Supervisor de EPS, en mi calidad de Director apruebo su contenido solicitándole darle el trámite respectivo.

Sin otro particular, me es grato suscribirme.

Atendamente,
"Id y Enseñad a Todos"

ng. Silvig Usé Rodríguez Serrano Director Unidad de EPS

SJRS/ra

Edificio de EPS, Facultad de Ingeniería, Ciudad Universitaria, zona 12

Teléfono directo: 2442-3509

Edificio T-5, Ciudad Universitaria, Zona 12, Guatemala, Centroamérica EIOD-REG-TG-008

> Guatemala, 24 de julio de 2015. Ref. EIQ.TG-IF.042.2015.

> > TRABAJOS

Ingeniero
Victor Manuel Monzón Valdez
DIRECTOR
Escuela de Ingeniería Química
Facultad de Ingeniería

Estimado Ingeniero Monzón:

Como consta en el registro de evaluación del informe final EIQ-PRO-REG-007 correlativo 088-2014 le informo que reunidos los Miembros de la Terna nombrada por la Escuela de Ingeniería Química, se practicó la revisión del:

INFORME FINAL DE TRABAJO DE GRADUACIÓN -Modalidad Ejercicio Profesional Supervisado-

Solicitado por la estudiante universitaria: Krista Alejandra Sandoval Hernández. Identificada con número de carné: 2010-20388.

Previo a optar al título de INGENIERA QUÍMICA.

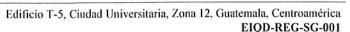
Siguiendo los procedimientos de revisión interna de la Escuela de Ingeniería Química, los Miembros de la Terna han procedido a **APROBARLO** con el siguiente título:

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S.A.

El Trabajo de Graduación ha sido asesorado por el Ingeniero Químico: Allan Emilio Maldonado Cordón.

Habiendo encontrado el referido informe final del trabajo de graduación SATISFACTORIO, se autoriza al estudiante, proceder con los trámites requeridos de acuerdo a las normas y procedimientos establecidos por la Facultad para su autorización e impresión.

"ID Y ENSEÑAD A TODOS"


Ing. Gerardo ordoñez COORDINADOR DE TERNA

Tribunal de Revisión Trabajo de Graduación

C.c.: archivo

ESCUELA MISSNERA QUANC

Ref.EIQ.TG.121.2015

El Director de la Escuela de Ingeniería Química de la Universidad de San Carlos de Guatemala, luego de conocer el dictamen del Asesor y de los Miembros del Tribunal nombrado por la Escuela de Ingeniería Química para revisar el Informe del Ejercicio Profesional Supervisado (EPS final) de la HERNÁNDEZ KRISTA SANDOVAL titulado: estudiante **ALEJANDRA** "DETERMINACIÓN DEL COMPORTAMIENTO DE LAS VARIABLES CRÍTICAS DE CONTROL, NÚMERO DE KOH (KOH), ÁCIDOS GRASOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMIENTO Y QUÍMICOS ADICIONADOS, EN LÁTEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LÁTEX, S.A." Procede a la autorización del mismo, ya que reúne el rigor, la secuencia, la pertinencia y la coherencia metodológica requerida.

"Id y Enseñad a Todos"

Ing. Victor Manuel Monzón Valdez

DIRECTOR

Escuela de Ingeniería Química

Guatemala, agosto de 2015

Cc: Archivo VMMV/ale

Universidad de San Carlos de Guatemala

Ref. DTG.437-2015

El Decano de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, luego de conocer la aprobación por parte del Director de la Escuela de Ingeniería Química. de graduación titulado: DETERMINACIÓN DEL trabajo CRÍTICAS LAS VARIABLES DE COMPORTAMIENTO DE CONTROL, NUMERO DE KOH (KOH), ACIDOS VOLÁTILES (VFA) Y TIEMPO DE ESTABILIDAD MECÁNICA (MST) EN FUNCIÓN AL TIEMPO DE ALMACENAMINTO Y QUÍMICOS ADICIONADOS, EN LATEX NATURAL CENTRIFUGADO EN INDUSTRIAS DE LATEX, S.A., presentado por la estudiante Krista Alejandra Sandoval Hernández, y después universitaria: de haber culminado las revisiones previas bajo la responsabilidad de las instancias correspondientes, se autoriza la impresión del mismo.

IMPRÍMASE

Ing. Pedro Antonio Aguilar Pola

DECANO

Guatemala, agosto de 2015

ACTO QUE DEDICO A:

Dios Por ser mi guía a lo largo de vida, mi carrera de

estudios y quien me ha permitido obtener este

logro.

Virgen María Por ser la luz en mi vida que nunca me

abandona.

Mis padres Dr. Roberto Sandoval y Sonia de Sandoval,

quienes me han apoyado sin importar las

circunstancias y por brindarme amor

medida.

Mis hermanos Sharon, Jenifer, Pamela Guillermo Fernando

Sandoval Hernández, por ser mis guías e

inspiración y brindarme su cariño.

Mis sobrinos Valeria y Nicolás Sandoval, quienes me han

demostrado otro tipo de amor y son la alegría

de mi vida.

Mi familia A mis abuelitos, tíos y primos, quienes me han

educado y han sido mi inspiración a lo largo de

mi vida.

Mi asesor y coasesor

Ingenieros Allan Maldonado y Edwin Saravia, quienes más que apoyarme me brindaron su amistad a lo largo de esta experiencia.

Mi revisor

Ing. Gerardo Ordóñez, por su apoyo y colaboración en la elaboración del presente proyecto.

Mis amigas

Teresa Barrios, Nancy Rodas, Adriana Putzeys, Iris García, Mónica Contreras, Marcela Castillo, Jacqueline Lara y Ximena Godínez, por compartir más de 10 años de amistad y siempre estar presentes en mi vida.

Mis amigos

Por brindarme alegrías y apoyarme en el transcurso de mi carrera, especialmente a Karla Marroquín, Silda Mora, Ariela Romero, Edna Dardón, Ana Lucía Martínez, Jorge Recinos Calderón, Charlie, Marvin Aguilar, Josué Tojes y Guillermo Villafuerte.

AGRADECIMIENTOS A:

Universidad de San

Carlos de Guatemala

Por ser mi casa de estudios durante 5 años y permitirme egresar de tan prestigiosa

universidad.

Facultad de Ingeniería Por educarme y permitirme cumplir una de mis

metas de vida.

Mis padres Por apoyar cada decisión tomada, guiarme

durante mi carrera y creer en mí.

Mi asesor Ingeniero Allan Maldonado, por apoyarme en el

transcurso de esta experiencia y convertirse en

un amigo muy apreciado.

Mi coasesor Ingeniero Edwin Saravia, por su paciencia,

sabiduría y conocimientos impartidos en el EPS,

y no solo ser un ejemplo, sino un buen amigo.

Lic. Rodrigo González Por abrirme las puertas en Grupo Introsa y

apoyarme en todo el proceso de graduación.

Grupo Introsa Especialmente a Beto de León, Steven

Maldonado y Santas Cosiguá, por apoyarme en el transcurso del EPS y ser grandes

•

compañeros.

Mis compañeras de EPS

Karla Marroquín y Silda Mora, por cada momento y experiencias compartidas, darme alegría y brindarme su sincera amistad a lo largo de 7 meses.

Mis mejores amigos

Ariela Romero y Jorge Recinos, quienes me apoyaron en todo este proceso y han brindado su amistad durante 5 años.

ÍNDICE GENERAL

INDIC	E DE ILL	JSTRACIO	NESV
LISTA	A DE SÍMI	BOLOS	XIII
GLOS	SARIO		XV
RESU	JMEN		XVII
OBJE	TIVOS		XIX
			XX
INTR			XXIII
1.	ANTECE	EDENTES .	1
2.	MARCO	TEÓRICO)3
	2.1.	Látex	3
		2.1.1.	Definición3
		2.1.2.	Composición del látex natural de campo 4
		2.1.3.	Tipos de látex4
	2.2.	Centrifuga	ación6
		2.2.1.	Definición6
		2.2.2.	Criterios de actuación 6
		2.2.3.	Tipos de centrífugas 7
			2.2.3.1. Sedimentadores centrífugos 7
			2.2.3.2. Filtros centrífugos 8
		2.2.4.	Proceso para la transformación de látex de
			campo a látex centrifugado9
			2.2.4.1. Proceso de centrifugación de látex 9
	2.3.	Variables	críticas de control a analizar10

	2.3.1.	Tiempo de	e estabilidad mecánica (MST)10
		2.3.1.1.	Definición11
		2.3.1.2.	Efecto de las sales (jabones) de
			ácidos grasos superiores o jabones
			carboxílicos11
		2.3.1.3.	Efecto del magnesio en la
			estabilidad mecánica del látex13
	2.3.2.	Ácidos gra	asos volátiles (VFA)14
		2.3.2.1.	Definición14
		2.3.2.2.	Carbohidratos y su metabolización
			en ácidos grasos volátiles15
		2.3.2.3.	Número VFA15
		2.3.2.4.	Relación entre el VFA y el tiempo
			de estabilidad mecánica (MST)15
	2.3.3.	Hidróxido	de potasio (KOH)16
		2.3.3.1.	Definición16
		2.3.3.2.	Número KOH17
2.4.	Químico	os adicionado	s al látex17
	2.4.1.	Ácido láur	ico17
		2.4.1.1.	Definición17
		2.4.1.2.	Propiedades17
		2.4.1.3.	Efecto del ácido láurico en el látex18
	2.4.2.	TMTD	18
		2.4.2.1.	Definición18
		2.4.2.2.	Propiedades19
		2.4.2.3.	Efecto del TMTD en el látex19
	2.4.3.	Óxido de 2	zinc19
		2.4.3.1.	Definición20
		2.4.3.2.	Propiedades20

			2.4.3.3.	Efecto del ZnO en el látex	20
		2.4.4.	Amoníaco		21
			2.4.4.1.	Definición	21
			2.4.4.2.	Propiedades	21
			2.4.4.3.	Efecto del amoníaco en látex	21
3.	DISEÑO) METODO	DLÓGICO		23
	3.1.	Variables	S		23
		3.1.1.	Variables d	ependientes y respuesta	23
		3.1.2.	Variables ir	ndependientes	23
	3.2.	Delimitad	ción de campo	o de estudio	23
	3.3.	Recursos	s humanos di	sponibles	24
	3.4.	Recursos	s materiales d	disponibles	24
		3.4.1.	Cristalería	y equipo	24
		3.4.2.	Material y r	eactivos	25
	3.5.	Técnica d	cuantitativa		25
		3.5.1.	Preparació	n de la materia prima	26
		3.5.2.	Centrifugac	ión del látex	26
		3.5.3.	Caracteriza	ción de la materia prima	26
		3.5.4.	Análisis fis	icoquímicos de las variables críticas	
			de control		26
			3.5.4.1.	Hidróxido de potasio (KOH):	
				ISO 127:2012	27
			3.5.4.2.	Tiempo de estabilidad mecánica	
				(MST): ISO 35:2004	27
			3.5.4.3.	Ácidos grasos volátiles (VFA):	
				ISO 506:1992	28
	3.6.	Recolecc	ión y ordena	miento de la información	29

	3.7.	Tabulació	n, orden	amiento	У	procesamiento	de	la	
		informació	n					3	1
	3.8.	Análisis es	stadístico.					4	5
		3.8.1.	Cálculos	estadístic	os			4	5
		3.8.2.	Resultado	os de los d	cálcu	los estadísticos		4	7
		3.8.3.	Análisis d	le varianza	a (Ar	nova)		5	5
4.	RESULT	ADOS						6	1
	4.1.	Resultado	núm. 1. C	Caracteriza	ación	de la materia p	rima	6	1
	4.2.	Resultado	núm. 2.	Correlac	ión (gráfica entre nú	ímero	de	
		KOH vs. ti	empo de a	almacenaı	mien	to		64	4
	4.3.	Resultado	núm. 3.	Correlac	ión (gráfica entre el	VFA	VS.	
		tiempo de	almacena	ımiento				68	3
	4.4.	Resultado	núm. 4.	Correlac	ción	gráfica entre el	MST	VS.	
		tiempo de	almacena	ımiento				7	1
	4.5.	Resultado	núm. 5. C	Comparac	ión g	ráfica entre MS	Γ de lá	tex	
		alto amoni	io vs. quín	nicos añad	didos	como preserva	ntes	74	4
5.	INTERP	RETACIÓN	DE RESI	ULTADOS	3			7	7
6.	LOGROS	S OBTENIE	oos					8	3
APÉN	DICES							9	1
A N I = \	· O O							40	4

ÍNDICE DE ILUSTRACIONES

FIGURAS

1.	Estructura del caucho natural	3
2.	Sedimentador centrífugo	8
3.	Filtros centrífugos	8
4.	Relación entre el tiempo de almacenamiento, la concentración de	
	jabones de ácidos grasos superiores y el tiempo de estabilidad	
	mecánica	12
5.	Relación entre la concentración de magnesio y el tiempo de	
	estabilidad mecánica en segundos	13
6.	Relación entre la cantidad de ácidos grasos volátiles (VFA) y el	
	tiempo de estabilidad mecánica (MST)	16
7.	Caracterización del contenido de hule seco (%DRC)	61
8.	Caracterización del contenido de sólidos totales (%TSC)	62
9.	Caracterización del contenido de amoníaco (%NH ₃)	62
0.	Caracterización de número de KOH (KOH núm.)	63
1.	Caracterización de ácidos grasos volátiles (VFA núm.)	63
2.	Caracterización de tiempo de estabilidad mecánica (MST)	64
3.	Látex alto amonio con nueva formulación	65
4.	Látex alto amonio con formulación actual	65
5.	Látex alto amonio normal con nueva formulación	66
6.	Látex alto amonio normal con formulación actual	66
7.	Látex bajo amonio sin mezcla bactericida con nueva formulación	67
8.	Látex bajo amonio con mezcla bactericida con formulación actual	67
9.	Látex alto amonio con nueva formulación	68

20.	VFA látex alto amonio con formulación actual	69
21.	VFA látex alto amonio normal con nueva formulación	69
22.	VFA látex alto amonio normal con formulación actual	70
23.	VFA látex bajo amonio sin mezcla bactericida con nueva	
	formulación	70
24.	VFA látex bajo amonio con mezcla bactericida con formulación	
	actual	71
25.	MST látex alto amonio con nueva formulación	71
26.	MST látex alto amonio con formulación actual	72
27.	MST látex alto amonio normal con nueva formulación	72
28.	MST látex alto amonio normal con formulación actual	73
29.	MST látex bajo amonio sin mezcla bactericida con nueva	
	formulación	73
30.	MST látex bajo amonio con mezcla bactericida con formulación	
	actual	74
31.	MST látex alto amonio sin laureato de amonio y con laureato de	
	amonio con nueva formulación	75
32.	MST látex alto amonio sin laureato de amonio y con laureato de	
	amonio con formulación actual	75
33.	MST látex alto amonio normal sin laureato de amonio y con	
	laureato de amonio con nueva formulación	76
34.	MST látex alto amonio normal sin laureato de amonio y con	
	laureato de amonio con formulación actual	76
	TABLAS	
I.	Composición de látex natural	4
II.	Tipos de látex centrifugado en función a preservantes agregados	5

III.	Efecto del fosfato en el KOH y MST en látex concentrado alto	
	amonio	
IV.	Propiedades físicas del ácido láurico	18
V.	Propiedades físicas del TMTD	19
VI.	Propiedades físicas del óxido de zinc	20
VII.	Propiedades físicas del amoníaco	21
VIII.	Número de KOH en látex alto amonio con nueva formulación	29
IX.	Ácidos grasos volátiles en látex alto amonio con nueva formulación.	30
X.	Tiempo de estabilidad mecánica en látex alto amonio con nueva	
	formulación	31
XI.	Caracterización de látex alto amonio	32
XII.	Caracterización de látex alto amonio normal	32
XIII.	Caracterización de látex bajo amonio	33
XIV.	Número de KOH en látex alto amonio con nueva formulación	33
XV.	Número de KOH en látex alto amonio con formulación actual	34
XVI.	Número de KOH en látex alto amonio normal con nueva	
	formulación	34
XVII.	Número de KOH en látex alto amonio normal con formulación	
	actual	35
XVIII.	Número de KOH en látex bajo amonio sin mezcla bactericida con	
	nueva formulación	35
XIX.	Número de KOH en látex bajo amonio con mezcla bactericida con	
	formulación actual	36
XX.	Ácidos grasos volátiles en látex alto amonio con nueva formulación.	36
XXI.	Ácidos grasos volátiles en látex alto amonio con formulación actual.	37
XXII.	Ácidos grasos volátiles en látex alto amonio normal con nueva	
	formulación	37
XXIII.	Ácidos grasos volátiles en látex alto amonio normal con formulación	

14

XXIV.	Acidos grasos volatiles en latex bajo amonio sin mezcia bactericida	
	con nueva formulación	38
XXV.	Ácidos grasos volátiles en látex bajo amonio con mezcla	
	bactericida con formulación actual	39
XXVI.	Tiempo de estabilidad mecánica en látex alto amonio sin laureato	
	de amonio con nueva formulación	39
XXVII.	Tiempo de estabilidad mecánica en látex alto amonio con laureato	
	de amonio con nueva formulación	40
XXVIII.	Tiempo de estabilidad mecánica en látex alto amonio sin laureato	
	de amonio con formulación actual	41
XXIX.	Tiempo de estabilidad mecánica en látex alto amonio con laureato	
	de amonio con formulación actual	41
XXX.	Tiempo de estabilidad mecánica en látex alto amonio normal sin	
	laureato de amonio con nueva formulación	42
XXXI.	Tiempo de estabilidad mecánica en látex alto amonio normal con	
	laureato de amonio con nueva formulación	42
XXXII.	Tiempo de estabilidad mecánica en látex alto amonio normal sin	
	laureato de amonio con formulación actual	43
XXXIII.	Tiempo de estabilidad mecánica en látex alto amonio normal con	
	laureato de amonio con formulación actual	44
XXXIV.	Tiempo de estabilidad mecánica en látex bajo amonio sin mezcla	
	bactericida con nueva formulación	44
XXXV.	Tiempo de estabilidad mecánica en látex bajo amonio con mezcla	
	bactericida con formulación actual	45
XXXVI.	Número de KOH en látex alto amonio con nueva formulación	47
XXXVII.	Número de KOH en látex alto amonio con formulación actual	48
XXXVIII.	Número de KOH en látex alto amonio normal con nueva	
	formulación	1 2

XXXIX.	Número de KOH en látex alto amonio normal con formulación actual	48
XL.	Número de KOH en látex bajo amonio sin mezcla bactericida con	
	nueva formulación	49
XLI.	Número de KOH en látex bajo amonio con mezcla bactericida con	
	formulación actual	49
XLII.	Ácidos grasos volátiles en látex alto amonio con nueva formulación	
	A	49
XLIII.	Ácidos grasos volátiles en látex alto amonio con nueva formulación	
	В	50
XLIV.	Ácidos grasos volátiles en látex alto amonio normal con nueva	
	formulación	50
XLV.	Ácidos grasos volátiles en látex alto amonio normal con formulación	
	actual	50
XLVI.	Ácidos grasos volátiles en látex bajo amonio sin mezcla bactericida	
	con nueva formulación	51
XLVII.	Ácidos grasos volátiles en látex bajo amonio con mezcla	
	bactericida con formulación actual	51
XLVIII.	Tiempo de estabilidad mecánica en látex alto amonio sin laureato	
	de amonio (nueva formulación)	51
XLIX.	Tiempo de estabilidad mecánica en látex alto amonio con laureato	
	de amonio (nueva formulación)	52
L.	Tiempo de estabilidad mecánica en látex alto amonio sin laureato	
	de amonio (formulación actual)	52
LI.	Tiempo de estabilidad mecánica en látex alto amonio con laureato	
	de amonio (formulación actual)	52
LII.	Tiempo de estabilidad mecánica en látex alto amonio normal sin	
	laureato de amonio (nueva formulación)	53

LIII.	nempo de estabilidad mecanica en latex alto amonio normal con	
	laureato de amonio (nueva formulación)53	i
LIV.	Tiempo de estabilidad mecánica en látex alto amonio normal sin	
	laureato de amonio (formulación actual)53	,
LV.	Tiempo de estabilidad mecánica en látex alto amonio normal con	
	laureato de amonio (formulación actual)54	
LVI.	Tiempo de estabilidad mecánica en látex bajo amonio sin mezcla	
	bactericida (nueva formulación)54	
LVII.	Tiempo de estabilidad mecánica en látex bajo amonio con mezcla	
	bactericida (formulación actual)54	
LVIII.	Experimento de un factor para el número de KOH según el tipo de	
	látex55)
LIX.	Análisis de varianza de un factor con varias muestras para el	
	número de KOH según el tipo de látex55)
LX.	Conclusión de análisis de varianza de un factor para el	
	número de KOH según el tipo de látex56	i
LXI.	Experimento de un factor para el número de VFA según el tipo de	
	látex56	i
LXII.	Análisis de varianza de un factor con varias muestras para el	
	número de VFA según el tipo de látex57	•
LXIII.	Conclusión de análisis de varianza de un factor para el número de	
	VFA según el tipo de látex57	•
LXIV.	Experimento de un factor para el MST según el tipo de látex57	,
LXV.	Análisis de varianza de un factor con varias muestras para el MST	
	según el tipo de látex58	ì
LXVI.	Conclusión de análisis de varianza de un factor para el número	
	MST según el tipo de látex58	,
LXVII.	Experimento de un factor para el MST de látex según los químicos	
	adicionados59)

LXVIII.	Análisis de varianza de un factor con varias muestras para el MST	
	de látex según los químicos adicionados	59
LXIX.	Conclusión de análisis de varianza de un factor para el tiempo de	
	estabilidad mecánica de látex según los químicos adicionados	59

LISTA DE SÍMBOLOS

Símbolo Significado

NH₃ Alcalinidad

σ Coeficiente de variaciónDRC Contenido de hule seco

TSC Contenido de sólidos totales

S Desviación estándar

 $\sigma_{\overline{x}}$ Error típico de la media

DAP Fosfato diamónico°C Grados centígrados

Kg Kilogramos

LAA Látex alto amonio
LBA Látex bajo amonio

Mg Magnesio

 \overline{x} Media

μm Micrómetromg MiligramosmL Mililitromin Minutos

N Normalidad

VFA No.Número de ácidos grasos volátilesKOH No.Número de hidróxido de potasio

% Porcentaje

PH Potencial de hidrógeno**RPM** Revoluciones por minuto

s Segundos

MST Tiempo de estabilidad mecánica

GLOSARIO

Alcalinidad Se refiere al total de álcali presente en el látex,

generalmente expresado como cantidad de

amoníaco agregado al látex (NH₃).

Destilación Operación de separación mediante vaporización y

condensación de líquidos, sólidos o gases presentes

en una mezcla.

DRC Dry Rubber Content. Medida de las partículas de

hule presentes en el látex.

Hidrólisis Reacción química entre una molécula de agua y otra

molécula en la que el agua se divide para formar

parte de otra especie química.

ISO International Organization for Standarization.

Organismo encargado de promover el desarrollo de

normas internacionales.

KOH No. Medida de gramos de hidróxido de potasio

necesarios para neutralizar radicales ácidos

formados por descomposición bacterial.

MST El tiempo de estabilidad mecánica es el tiempo que

tarda el látex en coagularse bajo efecto de una

agitación mecánica.

pH Potencial de hidrógeno. Es una medida de acidez o

alcalinidad de una disolución.

TSC Total Solids Content. Medida de los sólidos

procedentes de partículas de hule y de otras

partículas presentes en el látex.

VFA Volatile Fatty Acids. Ácidos grasos con cadenas de 6

carbonos o menos.

VFA No. Medida de ácidos grasos volátiles presentes en el

látex. Indica una medida de descomposición bacterial

que ha ocurrido en látex centrifugado.

RESUMEN

El presente proyecto de investigación tuvo como objetivo determinar el comportamiento de las variables críticas de control; número de KOH (KOH), ácidos grasos volátiles (VFA) y tiempo de estabilidad mecánica (MST) en látex centrifugado según el tiempo de almacenamiento del látex, así como de los químicos añadidos en la producción del mismo.

Los análisis se realizaron a nivel laboratorio para dos tipos de látex centrifugado: látex alto amonio y látex bajo amonio, cada uno trabajado con una nueva formulación de prueba y con la formulación que actualmente se emplea en Industrias de Látex, S. A. Para dichas muestras, se determinaron los valores de sus variables críticas de control según las normas internacionales establecidas; ISO 127:2012 para KOH, ISO 506:1992 para VFA e ISO 35:2004 para MST.

Se concluye que las tres variables críticas de control son directamente proporcionales al tiempo de almacenamiento, obteniendo mayores incrementos en el número de KOH y ácidos grasos volátiles en látex bajo amonio y un mayor incremento del MST en látex alto amonio normal.

A la vez se obtuvo un mayor tiempo de estabilidad mecánica en el látex alto amonio que contenía laureato de amonio en comparación al látex sin laureato de amonio, obteniendo una diferencia máxima de 2 018 segundos en el látex alto amonio normal y una diferencia mínima de 65 segundos en el látex alto amonio.

OBJETIVOS

General

Determinar el comportamiento de las variables críticas de control, KOH, VFA y MST, en función al tiempo de almacenamiento y químicos adicionados en látex centrifugado.

Específicos

- Caracterizar fisicoquímicamente el látex centrifugado de alto y bajo amonio.
- Establecer una correlación gráfica entre el comportamiento del número de KOH en el látex centrifugado alto y bajo amonio en función a tiempo de almacenamiento.
- 3. Establecer una correlación gráfica entre el comportamiento del VFA en el látex centrifugado alto y bajo amonio, en función a tiempo de almacenamiento.
- 4. Establecer una correlación gráfica entre el comportamiento del MST en el látex centrifugado alto y bajo amonio, en función a tiempo de almacenamiento.
- 5. Comparar el efecto de distintas concentraciones de laureato de amonio en la estabilidad mecánica del látex centrifugado alto amonio.

Hipótesis

Es posible determinar el comportamiento de las variables críticas de control KOH, VFA y MST del látex centrifugado de alto y bajo amonio, con respecto al tiempo de almacenamiento y los químicos adicionados, con el fin de obtener un estudio técnico del látex.

Hipótesis nula

H₀1: no existe diferencia significativa en la razón de aumento en el tiempo del núm. de KOH, en función al tipo de látex centrifugado.

H_{o2}: no existe diferencia significativa en la razón de aumento en el tiempo del núm. de VFA, en función al tipo de látex centrifugado.

H₀3: no existe diferencia significativa en la razón de aumento en el tiempo del MST, en función al tipo de látex centrifugado.

H_o4: no existe diferencia significativa en el comportamiento del tiempo de estabilidad mecánica del látex alto amonio, en función a la concentración de laureato de amonio adicionado.

Hipótesis alternativa

H₀1: existe diferencia significativa en la razón de aumento en el tiempo del núm. De KOH, en función al tipo de látex centrifugado.

 H_{o2} : existe diferencia significativa en la razón de aumento en el tiempo del núm. De VFA, en función al tipo de látex centrifugado.

H₀3: existe diferencia significativa en la razón de aumento en el tiempo del MST, en función al tipo de látex centrifugado.

H_o4: existe diferencia significativa en el comportamiento del tiempo de estabilidad mecánica del látex alto amonio en función a la concentración de laureato de amonio adicionado.

INTRODUCCIÓN

El látex natural es un producto agrícola extraído del árbol de caucho *Hevea brasiliensis* por medio de un tratamiento de picado o "sangrado" de la corteza. Guatemala es uno de los principales productores de caucho natural a nivel latinoamericano junto con México, Bolivia y Ecuador siendo Guatemala el mayor productor de los cuatro.

A nivel nacional, el caucho es uno de los principales productos de exportación, produciendo para febrero de 2014, US\$ 50 839 888, 00 como caucho y US\$ 4 477 325, 00 como productos manufacturados de caucho, siendo así un producto rentable y uno de los principales generadores de ingresos económicos al país.

Para la venta y exportación del látex extraído de los árboles de caucho, se deben cumplir ciertos requerimientos, los cuales se conocen como "variables críticas de control del látex", debido a que las mismas determinan la calidad del producto. Estas variables críticas de control son: número de hidróxido de potasio (KOH), número de ácidos grasos volátiles (VFA) y tiempo de estabilidad mecánica (MST).

Actualmente no se cuenta con estudios técnicos que permitan determinar un patrón específico de la relación entre variables críticas de control y tiempo de maduración, por lo que solo se conocen generalidades del comportamiento fisicoquímico del látex centrifugado.

Por ello para Industrias de Látex, S. A. es importante la elaboración del presente proyecto, en el cual se evaluará el comportamiento de las variables críticas de control KOH, VFA y MST, según el tiempo de almacenamiento del látex así como la concentración de los químicos que se le adicionan al mismo para su preservación, con el fin de conocer el comportamiento fisicoquímico del látex y así mejorar el producto final entregado a los clientes de la empresa.

1. ANTECEDENTES

Actualmente los estudios relacionados con el látex concentrado hacen referencia principalmente a la manufactura de productos de látex, como: guantes quirúrgicos, globos, calzado, preservativos, entre otros, observando el comportamiento del mismo al fabricar los productos, así como analizando las propiedades fisicoquímicas del látex en el proceso de manufactura. Sin embargo, estudios técnicos que analicen el comportamiento de las propiedades fisicoquímicas del látex con relación al tiempo de maduración del mismo, ya los químicos adicionados para su preservación existen escasamente.

Por ejemplo en la tesis del ingeniero Carlos Remberto Salguero titulada *Estudio del comportamiento de la maduración del látex natural, producto en Guatemala, centrifugado, de alto amonio* (1991), se realizaron análisis para determinar cómo es el comportamiento de los parámetros fisicoquímicos del látex centrifugado de alto amonio, en relación al tiempo de maduración del mismo. Para dichos análisis se tomaron tres muestras de látex al azar en un período de 5 meses, a las cuales se les realizaron análisis de laboratorio de DRC, TSC, KOH, VFA y MST, con el fin de realizar modelos matemáticos que permitieran determinar el comportamiento del látex centrifugado de alto amonio. Se observó un comportamiento de las variables analizadas con una relación matemática lineal, y = mx + b. Sin embargo, en el mismo estudio se recomienda realizar los análisis con mayor frecuencia para la obtención de mejores resultados.

También se muestra un estudio llamado Efecto de la maduración en las propiedades de compuestos de látex del Departamento de Tecnología del

caucho y polímeros de la Universidad "Prince of Songkla" en Tailandia, en donde se realiza un análisis de los parámetros fisicoquímicos del látex centrifugado en función al tiempo de maduración. Para dicho estudio se tomaron muestras de látex centrifugado y se maduraron a distintas temperaturas. 20, 30 y 55 °C. Los resultados obtenidos muestran el comportamiento del contenido de amoníaco, pH, viscosidad y reticulación del látex en función al tiempo de maduración así como a las temperaturas empleadas.

Dicho estudio muestra que el contenido de amoníaco y de pH disminuyó al incrementar el tiempo de maduración y la temperatura, mientras que la viscosidad aumenta al incrementar el tiempo de maduración pero disminuye al aumentar la temperatura. Para la reticulación de látex, se muestra que a 20 °C, esta permanece ligeramente constante en todos los tiempos de maduración; a 30 °C la reticulación surge clara luego de un tiempo de maduración de 28 horas y a 55 °C la reticulación aumenta rápidamente en un tiempo de 4 horas.

2. MARCO TEÓRICO

2.1. Látex

A continuación se presenta la definición de látex, conformado por una gráfica la cual muestra la estructura del mismo.

2.1.1. Definición

El látex natural es un producto extraído de los árboles de caucho o hule natural (*Hevea brasiliensis*), cuya función es actuar como protector bajo el tejido subcutáneo de dicho árbol.

Es una dispersión coloidal de una sustancia polimérica (cis-1,4-polisopreno) en medio acuoso.

Figura 1. Estructura del caucho natural

Fuente: Conjugation and resonance. Dienes. http://www.chemstone.net/O_Chem/Conj_1.htm.

Consulta: 14 de julio de 2014.

2.1.2. Composición del látex natural de campo

La típica composición del látex natural es:

Tabla I. Composición de látex natural

Contenido	%
Agua	58,5
Total de contenidos sólidos, distribuidos en los siguientes componentes:	41,5
Contenido de hule seco Sustancias proteínicas Lípidos neutros	36,1 1,4 1,0
Fosfolípidos	0,6
Ceniza Carbohidratos	0,5 1,6
Otros compuestos nitrogenados	0,3

Fuente: CHEN, Seon. *Latex concentrate production and introduction to latex product manufacture.* p. 2.

2.1.3. Tipos de látex

El látex natural de campo es concentrado a partir de un proceso de centrifugación, posterior a dicho proceso se agrega preservantes al látex concentrado. El preservante más común es el amoníaco.

Sin embargo, el amoníaco tiene ciertas desventajas; principalmente el olor que puede dar al látex y la contaminación al medio ambiente, por lo cual se ha intentado reducir la cantidad de amoníaco agregado al látex concentrado, creando así otro tipo de látex con mayor cantidad de otros preservantes como

tetrametiltiuranodisulfuro (TMTD), óxido de zinc (ZnO) y menor cantidad de amoníaco.

Según los preservantes agregados al látex centrifugado, este puede clasificarse en:

Tabla II. Tipos de látex centrifugado en función a preservantes agregados

Tipo de látex	Componente	Porcentaje
Látex concentrado alto amonio (Látex AA)	NH ₃ Límite superior	0,70 %
amorno (Eatox 7 t t)	Ácido láurico	0,01 %
	NH ₃ Límite superior	0,20 %
Látex concentrado bajo amonio (Látex BA - TZ)	TMTD ZnO Ácido láurico	0,013 % 0,013 % 0,05 %
Látex medio amonio (Látex MA)	NH ₃ Límite superior	0,60 %
Látex bajo amonio Santobrite (Látex BA - SPP)	NH₃ Pentaclorofenato de sodio	0,20 % 0,20 %
Látex bajo amonio – ácido bórico (Látex BA – AB)	NH₃ Ácido bórico Ácido láurico	0,20 % 0,24 % 0,05 %
Látex bajo amonio – zinc – dietilditiocarbamato (Látex BA – ZDC)	NH₃ ZDC Ácido láurico	0,20 % 0,1 % 0,05 %

Fuente: CHEN, Seon. Latex concentrate production and introduction to latex product manufacture. p. 194.

2.2. Centrifugación

A continuación se presenta la definición de centrifugación.

2.2.1. Definición

La centrifugación es una operación unitaria de separación, que utiliza la acción de la fuerza centrífuga para promover la sedimentación acelerada de partículas en una mezcla sólido – líquido.

Las centrífugas se emplean para conseguir la separación de una mezcla sólido – líquido por medio de la fuerza gravitacional acelerada obtenida a partir de una rotación rápida. Esto puede reemplazar el efecto de la gravedad natural en la sedimentación o puede proporcionar la fuerza motriz de la filtración.

2.2.2. Criterios de actuación

La separación de una suspensión sólido – líquido generalmente se mide por medio de la purificación de la fase líquida separada en el modo de sedimentación, o por el filtrado en el modo de filtración y la separación de los sólidos en la torta.

También existen otras consideraciones importantes, generalmente se usan algunos de los siguientes criterios en función a los objetivos del proceso:

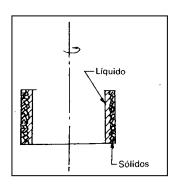
- Sequedad de la torta o contenido de humedad
- Recuperación total de sólidos
- Dosificación de polímero
- Tamaño a recuperar y rendimiento
- Rendimiento volumétrico de sólidos
- Pureza del sólido y razón de lavado

2.2.3. Tipos de centrífugas

A continuación se presenta los tipos de centrífugas que existen.

2.2.3.1. Sedimentadores centrífugos

Bajo el efecto de una fuerza centrífuga, la fase sólida más densa que la fase líquida sedimenta sobre las paredes del recipiente, simultáneamente, la fase líquida más ligera se desplaza hacia un menor diámetro.

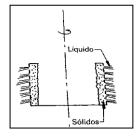

En la centrífuga de sedimentación, la separación puede ser en la forma de una clarificación, en la que los sólidos son separados de la fase líquida y en donde el objetivo es obtener un buen clarificado.

La separación también puede lograrse como una clasificación y desarenado en la que la separación se da por medio de diferencia de tamaños y densidad. Generalmente los finos de menor tamaño y densidad en la suspensión, se separan en la corriente central y los sólidos de mayor tamaño o más densos se capturan en la torta por rechazo.

Existen varios tipos de sedimentadores centrífugos:

- Centrífugas tubulares
- Centrífugas de cámara múltiple
- Clarificadores centrífugos de descarga con cuchillas
- Centrífugas de disco
- Decantadores centrífugos
- Centrífugas de recipiente apantallado

Figura 2. Sedimentador centrífugo


Fuente: PERRY, Robert. Manual del ingeniero químico. Tomo III. p. 18 – 133.

2.2.3.2. Filtros centrífugos

En una centrífuga de filtración, para la separación de los sólidos de los líquidos no es necesaria la existencia de una diferencia neta de densidades entre las fases.

Las fases sólida y líquida se desplazan hacia la parte externa del recipiente por la acción de una fuerza centrífuga, de esta manera los sólidos son retenidos por medio filtrante, mientras que el fluido pasa a través de la torta sólida y el filtro.

Figura 3. Filtros centrífugos

Fuente: PERRY, Robert. Manual del ingeniero químico. Tomo III. p. 18 – 133.

2.2.4. Proceso para la transformación de látex de campo a látex centrifugado

El látex natural de campo contiene un porcentaje de hule seco (DRC) de 30 a 40 %, y se requiere que el mismo tenga un DRC de 60 % con el fin de generar ingresos económicos.

Para obtener dicho porcentaje de hule seco en el látex, se debe concentrar el mismo, lo cual puede obtenerse por medio de tres métodos de concentración:

- Centrifugación: 95 % de las concentraciones se obtiene por medio de este método, el cual, será el empleado para la concentración del látex a analizar.
- Cremación: 2,5 % de las concentraciones de látex se realizan por medio de este método. Aproximadamente dos tercios de partículas pequeñas presentes en el látex así como partículas no solubles en agua son removidas.
- Evaporación: 2,5 % de las concentraciones de látex se realizan por medio de este método. Solo se remueve agua, por lo que el látex contiene todas las partículas no solubles en agua presentes luego de dicha concentración.

2.2.4.1. Proceso de centrifugación de látex

Básicamente el proceso de centrifugación permite que el látex separe las partículas ligeras de caucho de los componentes más densos.

En el proceso, una mezcla de látex de campo previamente preservado con amoníaco se introduce en una centrífuga, que rota a una velocidad de 7 000 rpm, en la cual, se dan las siguientes etapas:

- Se remueve el agua extra, permitiendo la concentración del látex de campo hasta un 60 % de DRC.
- Se remueven los materiales insolubles, como los preservantes sólidos.
- Se remueven aproximadamente 50 60 % de los ácidos grasos volátiles.
- Se remueve más de 50 % del amoníaco empleado como preservante en el látex de campo.

Por lo que finalmente el proceso de centrifugación permite la separación del látex en dos fracciones:

- Una fracción poco densa y concentrada en caucho
- Una fracción densa (skim)

En la fracción poco densa se obtiene el 60 % de DRC deseado.

2.3. Variables críticas de control a analizar

A continuación se presenta las diferentes variables críticas de control.

2.3.1. Tiempo de estabilidad mecánica (MST)

A continuación se presenta la definición de la estabilidad mecánica.

2.3.1.1. Definición

La estabilidad mecánica es la capacidad de un látex para conservar su estabilidad coloidal bajo efecto desestabilizador de una agitación mecánica.

El tiempo de estabilidad mecánica se refiere al tiempo que tarda el látex en coagularse bajo el efecto de una agitación mecánica.

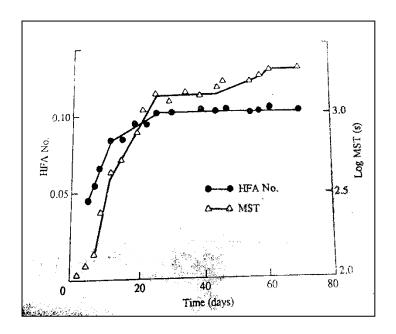
2.3.1.2. Efecto de las sales (jabones) de ácidos grasos superiores o jabones carboxílicos

En el látex amoniacal, los triglicéridos, diglicéridos, monoglicéridos, ésteres y fosfolípidos pueden ser hidrolizados.

Los triglicéridos contenidos en el látex pueden ser degradados a:

- Gliceról
- Jabones de ácidos grasos superiores

Los fosfolípidos se degradan en:

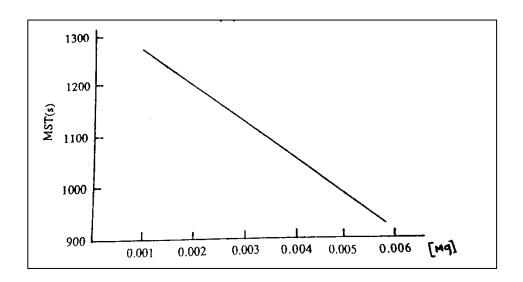

- Gliceról
- Jabones de ácidos grasos superiores
- Aniones de fosfato y bases orgánicas

La concentración de los jabones de ácidos grasos superiores que han sido degradados aumenta proporcionalmente al tiempo de almacenamiento del látex y obtiene un valor constante en un tiempo de 3 a 6 semanas.

El tiempo de estabilidad mecánica (MST) de látex recién preparado es muy bajo; de aproximadamente 100 segundos o menos, y va aumentando proporcionalmente al tiempo de almacenamiento.

Se ha relacionado este incremento del tiempo de estabilidad mecánica con el aumento de concentración de los jabones de ácidos grasos superiores, lo cual se debe a que más del 92 % de los mismos son adsorbidos en la superficie del látex y causan un incremento en las cargas negativas, por lo cual permiten un incremento en la estabilidad mecánica del látex.

Figura 4. Relación entre el tiempo de almacenamiento, la concentración de jabones de ácidos grasos superiores y el tiempo de estabilidad mecánica


Fuente: CHEN, Seon. Latex concentrate production and introduction to latex product manufacture. p. 15a.

2.3.1.3. Efecto del magnesio en la estabilidad mecánica del látex

La concentración total de iones inorgánicos en el látex de campo es de 0,5 %, en donde solo una menor parte es constituida por magnesio.

El magnesio tiene un efecto desestabilizador en la estabilidad mecánica del látex, debido a que forma jabones de ácidos grasos insolubles, por lo cual estos no pueden ser adsorbidos en la superficie del látex y por ende no permiten el incremento en el tiempo de estabilidad mecánica.

Figura 5. Relación entre la concentración de magnesio y el tiempo de estabilidad mecánica en segundos

Fuente: CHEN, Seon. Latex concentrate production and introduction to latex product manufacture. p. 15b.

Debido a lo anterior, se debe mantener un control en la concentración del magnesio presente en el látex. Para poder controlar el exceso en la concentración de magnesio y otras sales minerales, se agrega fosfato diamónico (DAP) antes del proceso de centrifugación del látex. Sin embargo, el DAP tiene ciertas desventajas para el látex, ya que el exceso de fosfato disminuye la estabilidad mecánica del látex, así como aumenta el número de KOH.

Tabla III. Efecto del fosfato en el KOH y MST en látex concentrado alto amonio

Tipo de látex	Número KOH	MST [s]	
Látex alto amonio	0,49	1 285	
Látex alto amonio + 0,5 % fosfato	0,95	485	
Látex alto amonio + 1,0 % fosfato	1,40	270	

Fuente: CHEN, Seon. Latex concentrate production and introduction to latex product manufacture. p. 13.

2.3.2. Ácidos grasos volátiles (VFA)

A continuación se presenta la definición de los ácidos grasos volátiles.

2.3.2.1. Definición

Los ácidos grasos volátiles son ácidos grasos con una cadena de carbonos de 6 carbonos o menos.

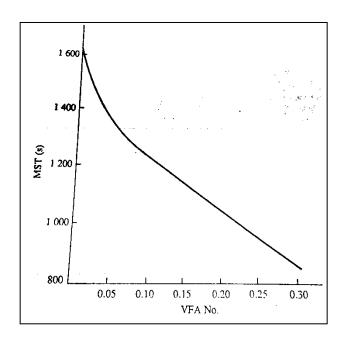
2.3.2.2. Carbohidratos y su metabolización en ácidos grasos volátiles

Dentro de la estructura del látex se han detectado carbohidratos como: la sucrosa, glucosa, galactosa, fructosa y dos pentosas.

Cuando no se tiene una adecuada preservación del látex concentrado, los carbohidratos (y algunos aminoácidos) son metabolizados por bacterias hasta convertirse en ácidos grasos volátiles (VFA), siendo los ácidos formados:

- Ácido acético
- Ácido fórmico
- Ácido propiónico

Se forma principalmente ácido acético con pequeñas cantidades de ácido fórmico y propiónico.


2.3.2.3. Número VFA

La medida de VFA en el látex se conoce como "número VFA", este indica una medida de la descomposición bacterial que ha ocurrido en el látex centrifugado.

2.3.2.4. Relación entre el VFA y el tiempo de estabilidad mecánica (MST)

Un incremento en la cantidad de las sales de amonio de los ácidos grasos volátiles en el látex causa que disminuya el tiempo de estabilidad mecánica del látex.

Figura 6. Relación entre la cantidad de ácidos grasos volátiles (VFA) y el tiempo de estabilidad mecánica (MST)

Fuente: CHEN, Seon. Latex concentrate production and introduction to latex product manufacture. p. 15b.

2.3.3. Hidróxido de potasio (KOH)

A continuación se presenta la definición de hidróxido de potasio.

2.3.3.1. Definición

También conocido como potasa cáustica, el KOH es un compuesto químico inorgánico de uso común.

Es una base fuerte, higroscópica (absorbe agua) cuya función principal es en la elaboración de jabones mejor conocidos como "jabones de potasio".

2.3.3.2. Número KOH

Para poder cuantificar el KOH dentro del látex se emplea el término "Número KOH", este se refiere a la cantidad de gramos de hidróxido de potasio equivalentes a la cantidad de radicales ácidos combinados con amonio en una muestra de látex.

Es decir se refiere a la cantidad de gramos de KOH necesarios para neutralizar dichos radicales ácidos, basándose en que los mismos son causados por bacterias.

2.4. Químicos adicionados al látex

A continuación se presentan los químicos adicionales al látex, con su definición y tabulación.

2.4.1. Ácido láurico

A continuación se describe la definición de ácido láurico.

2.4.1.1. Definición

El ácido láurico es un ácido graso saturado con una cadena de 12 carbonos. Es un sólido blanco con forma de polvo.

2.4.1.2. Propiedades

A continuación en la tabla IV, se presentan las propiedades del ácido láurico.

Tabla IV. Propiedades físicas del ácido láurico

Nombre	Fórmula	Peso fórmula	Punto de fusión [°C]	Punto de ebullición [°C]	Solubilio en	dad
Ácido láurico	CH ₃ (CH ₂) ₁₀ CO ₂ H	200,31	48	225	Agua alcohol éter	x x

Fuente: PERRY, Robert. Manual del ingeniero químico. Volumen I. p. 2-44.

2.4.1.3. Efecto del ácido láurico en el látex

La principal función del ácido láurico en el látex es actuar como estabilizador mejorando el tiempo de estabilidad mecánica.

El ácido láurico se disuelve en una solución concentrada de amoníaco, formando así un jabón de ácido graso: el laureato de amonio. Este jabón carboxílico se adhiere a las partículas de látex mejorando la estabilidad mecánica del mismo.

2.4.2. TMTD

A continuación se describe la definición de TMTD.

2.4.2.1. Definición

El tetrametiltiuranodisulfuro, mejor conocido como TMTD, es un acelerador orgánico. Es un sólido blanco o grisáceo con forma granular o en polvo.

2.4.2.2. Propiedades

A continuación en la tabla V, se presentan las propiedades físicas del TMTD.

Tabla V. Propiedades físicas del TMTD

Nombre	Fórmula	Peso fórmula	Punto de fusión [°C]	Punto de ebullición [°C]	Solubilidad en
TMTD	[(CH ₃) ₂ NCS] ₂ S ₂	240,41	155	-	Agua alcohol éter

Fuente: PERRY, Robert. Manual del ingeniero químico. Volumen I. p. 2-50.

2.4.2.3. Efecto del TMTD en el látex

El TMTD se emplea con una combinación de óxido de zinc como preservantes del látex natural.

El uso de TMTD como preservante se ha vuelto popular debido a que es muy efectivo, relativamente barato y es fácil de usar, por lo que es utilizado a nivel mundial como preservante secundario del látex concentrado de bajo amonio.

2.4.3. Óxido de zinc

A continuación se presenta la definición del oxido de zinc.

2.4.3.1. Definición

El óxido de zinc es un compuesto inorgánico de fórmula química ZnO. Es un sólido blanco insoluble en agua con forma de polvo.

2.4.3.2. Propiedades

A continuación se presentan las propiedades físicas del óxido de zinc.

Tabla VI. Propiedades físicas del óxido de zinc

Nombre	Fórmula	Peso	Punto de	Punto de	Solubilidad en 100
		fórmula	fusión [°C]	ebullición [°C]	partes
Óxido de zinc	ZnO	81,38	Mayor a 1 800	1	Agua a 4.2 E-4

Fuente: PERRY, Robert. Manual del ingeniero químico. Volumen I. p. 2-14.

2.4.3.3. Efecto del ZnO en el látex

El óxido de zinc se utiliza junto al TMTD como preservantes del látex. Principalmente, la función del óxido de zinc es actuar como activador, ya que el óxido de zinc permite que se activen las propiedades del acelerador orgánico, siendo en este caso el tetrametiltiuranodisulfuro (TMTD).

A la vez el óxido de zinc actúa como protector del látex, ya que lo protege de hongos por sus propiedades antibacteriales.

2.4.4. Amoníaco

A continuación se presenta la definición de amoniaco.

2.4.4.1. Definición

Es un compuesto formado por hidrógeno y nitrógeno con fórmula química NH₃. Generalmente se encuentra el amoníaco en forma gaseosa. Sin embargo, también puede contenerse en forma líquida en tanques cilíndricos, siendo un líquido corrosivo e incoloro.

2.4.4.2. Propiedades

A continuación se presentan las propiedades de amoniaco.

Tabla VII. Propiedades físicas del amoníaco

Nombre	Fórmula	Peso	Punto de	Punto de	Solubilidad en 100
		fórmula	fusión [°C]	ebullición [°C]	partes
Amoníaco	NH ₃	17,03	-77,7	-33,4	Agua a 0° 89,9 Agua a 96° 7,4

Fuente: PERRY, Robert. Manual del ingeniero químico. Volumen I. p. 2-10.

2.4.4.3. Efecto del amoníaco en látex

El amoníaco se utiliza principalmente como preservantedel látex para prevenir la coagulación del mismo durante la transportación y almacenamiento, es decir que el látex previene la coagulación prematura del látex.

3. DISEÑO METODOLÓGICO

3.1. Variables

A continuación se presentan las variables.

3.1.1. Variables dependientes y respuesta

- Tiempo de estabilidad mecánica (MST)
- Concentración de ácidos grasos (VFA)
- Número KOH (KOH)

3.1.2. Variables independientes

- Tiempo de maduración
- Tipo de látex
- Laureato de amonio

3.2. Delimitación de campo de estudio

El proyecto se limitó a la toma de muestras de dos tipos de látex centrifugado, de alto amonio y de bajo amonio proveniente de la empresa Industrias de Látex, S. A. ubicada en el kilómetro 130 carretera al Pacífico, Río Bravo, Suchitepéquez.

En el proyecto se evaluaron las muestras periódicamente para analizar el comportamiento de las variables críticas de control: hidróxido de potasio (KOH),

ácidos grasos volátiles (VFA) y tiempo de estabilidad mecánica (MST) en función al tiempo de almacenamiento, así como de los químicos añadidos como preservantes del látex.

Los resultados obtenidos para el proyecto de ejercicio profesional supervisado, aplican únicamente para látex producido en Industrias de Látex, S. A., debido a los métodos de producción, formulaciones y tipos de látex manejados en la empresa.

3.3. Recursos humanos disponibles

- Investigadora responsable del proyecto: Krista Alejandra Sandoval Hernández.
- Investigador asesor: ingeniero químico Allan Emilio Maldonado Cordón
- Investigador co asesor: ingeniero químico Edwin José Saravia Cano
- Jefa de laboratorio INLATSA: Santas Cosiguá

3.4. Recursos materiales disponibles

Se presentaran los materiales disponiables.

3.4.1. Cristalería y equipo

- Balanza analítica
- Beakers
- Buretas
- Potenciómetro
- Agitador magnético
- Aparato para medición de estabilidad mecánica a 14 000 RPM

- Termómetro
- Tamiz de 180 µm
- Caja petri
- Varillas de agitación
- Destilador Markham
- Generador de vapor
- Microburetas de 0,01 mL
- Pipetas volumétricas

3.4.2. Material y reactivos

- Solución de formaldehido 5 % libre de ácido
- Solución de hidróxido de potasio 0,5 M libre de carbonato
- Agua destilada
- Sulfato de amonio al 35 %
- Hidróxido de bario 0,01 N
- Indicador de azul de bromotimol para VFA
- Ácido sulfúrico

3.5. Técnica cuantitativa

La técnica con la que se realizó el presente proyecto fue cuantitativa, experimental y comparativa, debido a que se observó y cuantificó en un tiempo aproximado de 3 a 4 meses, cómo varían cada una de las variables a analizar según el tiempo de maduración, así como según los químicos añadidos al látex centrifugado para poder preservarlo.

Los análisis pertinentes se realizaron por medio de los métodos establecidos según las Normas ISO 127:2012 para KOH, ISO 506:1992 para VFA e ISO 35:2004 para MST.

3.5.1. Preparación de la materia prima

La preparación de la materia prima consistió en la operación unitaria de centrifugación. Esta preparación se realizó previa a la caracterización de materia prima por medio de los análisis fisicoquímicos a escala laboratorio para TSC, NH₃ y VFA.

3.5.2. Centrifugación del látex

La centrifugación del látex se realizó en una centrífuga de decantación a 7 000 RPM, con el fin de obtener látex concentrado en un 60 por ciento de su contenido total de hule seco.

3.5.3. Caracterización de la materia prima

Previo a los análisis de las variables críticas de control realizados, se realizó la caracterización fisicoquímica de la materia prima, con la que se obtuvieron los parámetros iniciales de las variables críticas de control a estudiar por medio de las normas ISO establecidas para cada una.

3.5.4. Análisis fisicoquímicos de las variables críticas de control

A continuación se presenta el análisis fisicoquímicos de las variables criticas de control.

3.5.4.1. Hidróxido de potasio (KOH): ISO 127:2012.

- Se calibró el potenciómetro.
- Se pesó en un beaker de 250 mL una cantidad de látex que contenga aproximadamente 50 gramos de sólidos totales.
- Se ajustó la cantidad de alcalinidad del látex a 0,5 ± 0,1 % de amonio agregando una solución de formaldehido.
- Se añadió agua desmineralizada hasta diluir el látex a un 30 por ciento de sólidos totales.
- Se insertó el electrodo dentro del látex.
- Se midió el pH mientras se agitaba la muestra.
- Se añadió 2 mL de solución de hidróxido de potasio mientras se agitaba la muestra.
- Se midió el pH de la muestra.
- Se agregó 1 mL de solución de hidróxido de potasio.
- Se midió el pH de la muestra.
- Se continuó añadiendo 1 mL de hidróxido de potasio hasta que se sobrepasó el punto final, el cual se conoce como el punto en el que la primera diferencia de pH alcance su valor máximo y la segunda diferencia de pH de un valor negativo.

3.5.4.2. Tiempo de estabilidad mecánica (MST): ISO 35:2004

 Se determinó el tipo de látex a trabajar para determinar la solución amoniacal a ser empleada en el análisis; utilizando una solución concentrada al 0,6 por ciento de amoníaco para látex bajo amonio y una solución concentrada al 1,6 por ciento de amoníaco para látex alto amonio.

- Se diluyeron 100 gramos de látex en un beaker de 250 mL con la cantidad apropiada de amonio hasta obtener 55 por ciento de total de sólidos.
- Se calentó el látex diluido hasta obtener una temperatura de 36 hasta 37 °C.
- Se tamizaron 80 gramos del látex caliente en un tamiz 85 de acero inoxidable en el contenedor del equipo.
- Se inició el equipo de estabilidad mecánica ajustando el reóstato hasta obtener 14 000 ± 2 000 RPM.
- Se removió periódicamente látex del contenedor utilizando una varilla de vidrio dibujando una línea de látex en la palma de la mano.
- Se obtuvo el punto final de la estabilidad mecánica al aparecer coágulos en la palma de la mano.

3.5.4.3. Ácidos grasos volátiles (VFA): ISO 506:1992

- Se taró un *beaker* de 250 mL y se pesaron 50 gramos de látex.
- Se agregaron 50 mL de sulfato de amonio concentrado en un 35 % (m/m)
 mientras se agitó la muestra.
- Se coaguló la muestra de látex.
- Se sumergió el beaker en un baño de agua a aproximadamente 70 °C.
- Se filtró el suero separado del látex por medio de papel filtro en un beaker.
- Se colocaron 25 mL del suero filtrado en un beaker de 50 mL.
- Se acidificó la muestra agregando 5 mL de solución de ácido sulfúrico al 50 % (m/m), y se agitó la mezcla de suero y ácido.
- Se introdujeron 10 mL de la mezcla de suero y ácido sulfúrico en el equipo de destilación.

- Se agregó 1 gota de antiespumante.
- Se colocó un earlenmeyer de 250 mL para recibir el destilado.
- Se destiló la muestra a un ritmo de 3 5 mL/min hasta obtener 100 mL de destilado.
- Se titularon los 100 mL de desilado con solución de hidróxido de bario a 0,01N usando azul de bromotimol como indicador.
- Se calculó el número de ácidos grasos volátiles contenidos en la muestra.

3.6. Recolección y ordenamiento de la información

En el presente estudio, se recolectaron los datos obtenidos en los análisis fisicoquímicos de número de KOH, número de ácidos grasos volátiles y tiempo de estabilidad mecánica; obteniendo con ello las siguientes tablas:

Tabla VIII. Número de KOH en látex alto amonio con nueva formulación

Tipo de látex	Contenido de sólidos totale: (TSC)		NH3 contenido agua [mL]	en	Formaldehído a agregar [mL]	Agua a agregar [mL]
Alto amonio con nueva formulación	63,25		2,05		25,12	61,88
Fecha	Peso muestra [g]	Volumen de Ko gastados [ml		ДрН1	ΔрН2
18/09/2014	80,022		7		0,04	-0,04
10/09/2014	80,067		8		0,03	-0,06
25/09/2014	80,058		8		0,05	-0,09
25/09/2014	80,013		8		0,06	-0,10
01/10/2014	80,069	80,069		8		-0,01
01/10/2014	80,043	80,043		9		-0,10
08/10/2014	80,061	80,061		8		-0,02
06/10/2014	80,054		9		0,01	-0,17
15/10/2014	80,039		9		0,11	-0,04
13/10/2014	80,071		10		0,03	-0,08
24/10/2014	80,057		9		0,06	-0,08
24/10/2014	80,047		9		0,09	-0,08
20/40/2044	80,022		9		0,02	-0,10
29/10/2014	80,064		10		0,04	-0,06
04/11/2014	80,096		10		0,03	-0,07
04/11/2014	80,045		10		0,09	-0,03
Tipo de látex	Contenido de sólidos totales (TSC)	NI	H3 contenido en agua [mL]	Forr	maldehído a agregar [mL]	Agua a agregar [mL]

Continuación de la tabla VIII.

Alto amonio con nueva formulación	63,25	2,05	25,12	61,88
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ДрН1	∆рН2
25/11/2014	80,035	9	0,09	-0,02
25/11/2014	80,074	10	0,01	-0,05
09/12/2014	80,038	10	0,01	-0,09
09/12/2014	80,012	10	0,03	-0,09
24/12/2014	80,073	10	0,02	-0,06
24/12/2014	80,049	10	0,02	-0,08
02/01/2015	80,029	10	0,04	-0,07
02/01/2015	80,046	10	0,04	-0,07
14/04/2015	80,058	10	0,07	-0,03
14/01/2015	80,046	10	0,04	-0,07

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información, sección 3.5.3.1.

Las tablas de recolección de la información para el análisis fisicoquímico de número de KOH se encuentran en la sección de apéndices; apéndice núm. 4.

Tabla IX. Ácidos grasos volátiles en látex alto amonio con nueva formulación

Tipo de látex		Alto amonio co	on nueva formulación	
Fecha	Contenido de sólidos totales (TSC)	Masa de látex [g]	Concentración de Ba(OH)₂	Volumen de Ba(OH) ₂ empleado [mL]
18/09/2014		50,042		0,65
25/09/2014		50,030		0,80
01/10/2014		50,080		0,93
07/10/2014]	50,056]	0,96
15/10/2014]	50,059]	0,94
23/10/2014]	50,091]	1,05
28/10/2014	1	50,025	1	1,08
04/11/2014	1	50,062	1	1,05
11/11/2014	63,25	50,093	0,0049	1,12
19/11/2014		50,040		0,96
25/11/2014]	50,021]	1,11
02/12/2014	1	50,054	1	1,05
09/12/2014	1	50,070	1	1,16
16/12/2014	1	50,044	1	1,60
23/12/2014	1	50,016	1	1,60
30/12/2014		50,090		1,62
13/01/2015		50,025		2,10

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información, sección 3.5.3.3.

Las tablas de recolección de la información para el análisis fisicoquímico de número de VFA se encuentran en la sección de apéndices; apéndice núm. 5.

Tabla X. Tiempo de estabilidad mecánica en látex alto amonio con nueva formulación

Tipo de látex	Alto amonio co	Alto amonio con laureato de amonio (Nueva formulación)					
Contenido de sólidos totales (TSC)	63,25	Amoníaco a agregar [g]	15,00				
Fecha	Peso de muestra [g]	Tiem	po [s]				
18/09/2014	100,045	3	4				
25/09/2014	100,072	11	11				
03/10/2014	100,016	18	37				
10/10/2014	100,054	32	28				
17/10/2014	100,085	351					
31/10/2014	100,084	50	02				
06/10/2014	100,064	54	40				
14/11/2014	100,097	57	70				
28/11/2014	100,056	74	48				
03/12/2014	100,030	75	50				
23/12/2014	100,032	82	21				
30/12/2014	100,043	815					
08/01/2015	100,034	872					
20/01/2015	100,049	96	60				

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información, sección 3.5.3.2.

Las tablas de recolección de la información para el análisis fisicoquímico de MST se encuentran en la sección de apéndices; apéndice núm. 6.

3.7. Tabulación, ordenamiento y procesamiento de la información

A continuación se presenta la tabulación y ordenamiento de los datos obtenidos a partir de los análisis fisicoquímicos realizados para el desarrollo de la investigación.

Tabla XI. Caracterización de látex alto amonio

Tipo de látex		in laureato de onio	Alto amonio con laureato de amonio		
Tipo de latex	Nueva formulación	Formulación actual	Nueva formulación	Formulación actual	
Núm. de tambo	1	7	2	10	
Fecha	18/09/2014	24/09/2014	18/09/2014	14/11/2014	
DRC	59,21	62,56	61,93	62,58	
TSC	63,89	63,80	63,25	63,97	
NH ₃	0,77	1,01	0,75	0,95	
KOH	0,47	0,40	0,44	0,41	
VFA	0,012	0,012	0,012	0,011	
MST	42	24	34	64	

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndices 4 – 6.

Tabla XII. Caracterización de látex alto amonio normal

Tipo de látex	Alto amonio normal sin laureato de amonio			normal con le amonio
	Nueva formulación	Formulación actual	Nueva formulación	Formulación actual
Núm. de tambo	3	8	4	11
Fecha	26/09/2014	24/09/2014	26/09/2014	24/09/2014
DRC	59,21	60,79	58,70	62,40
TSC	60,54	62,04	60,03	63,80
NH ₃	0,86	0,88	0,85	0,69
КОН	0,57	0,40	0,54	0,43
VFA	0,014	0,012	0,014	0,013
MST	36	24	41	60

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndices 4 – 6.

Tabla XIII. Caracterización de látex bajo amonio

Tipo de látex	Bajo amonio sin mezcla bactericida	Bajo amonio con mezcla bactericida	
	Nueva formulación	Formulación actual	
Núm. de tambo	6	12	
Fecha	06/11/2014	9/10/2014	
DRC	60,78	61,87	
TSC	62,17	63,31	
NH ₃	0,21	0,25	
KOH	0,53	0,45	
VFA	0,015	0,012	
MST	48	40	

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndices 4 – 6.

Tabla XIV. Número de KOH en látex alto amonio con nueva formulación

Número de KOH de látex alto amonio (Nueva formulación)				
Fecha	Día	KOH núm.		
18/09/2014	1	0,44		
25/09/2014	8	0,46		
01/10/2014	14	0,50		
08/10/2014	21	0,50		
15/10/2014	28	0,55		
24/10/2014	37	0,54		
29/10/2014	42	0,55		
04/11/2014	48	0,58		
19/11/2014	63	0,59		
25/11/2014	69	0,57		
09/12/2014	84	0,58		
24/12/2014	98	0,57		
02/01/2015	107	0,57		
14/01/2015	119	0,56		

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 4.

Tabla XV. Número de KOH en látex alto amonio con formulación actual

Número de KOH de látex alto amonio (Formulación actual)				
Fecha	Día	KOH núm.		
14/11/2014	1	0,41		
26/11/2014	13	0,46		
05/12/2014	22	0,48		
11/12/2014	28	0,50		
24/12/2014	41	0,49		
02/01/2015	50	0,49		
08/01/2015	56	0,52		
15/01/2015	63	0,55		
22/01/2015	70	0,56		

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 4.

Tabla XVI. Número de KOH en látex alto amonio normal con nueva formulación

Número de KOH de látex alto amonio normal (Nueva formulación)				
Fecha	Día	KOH núm.		
26/09/2014	1	0,54		
02/10/2014	7	0,61		
08/10/2014	13	0,65		
15/10/2014	20	0,64		
24/10/2014	29	0,64		
04/11/2014	40	0,67		
12/11/2014	48	0,70		
19/11/2014	55	0,70		
25/11/2014	61	0,71		
10/12/2014	76	0,72		
24/12/2014	90	0,69		
02/01/2015	99	0,69		
14/01/2015	111	0,73		

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 4.

Tabla XVII. Número de KOH en látex alto amonio normal con formulación actual

Número de KOH de látex alto amonio normal (Formulación actual)			
Fecha	Día	KOH núm.	
14/10/2014	1	0,43	
24/10/2014	11	0,47	
05/11/2014	23	0,55	
13/11/2014	31	0,54	
27/11/2014	45	0,61	
11/12/2014	59	0,63	
18/12/2014	66	0,60	
24/12/2014	72	0,61	
02/01/2015	81	0,65	
15/01/2015	94	0,68	

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 4.

Tabla XVIII. Número de KOH en látex bajo amonio sin mezcla bactericida con nueva formulación

Número de KOH de látex bajo amonio sin mezcla bactericida (Nueva formulación)		
Fecha	Día	KOH núm.
06/11/2014	1	0,53
13/11/2014	8	0,6
27/11/2014	22	0,83
10/12/2014	35	0,91
24/12/2014	49	0,90
02/01/2015	58	0,91
08/01/2015	64	0,98
16/01/2015	72	1,14

Tabla XIX. Número de KOH en látex bajo amonio con mezcla bactericida con formulación actual

Número de KOH de látex bajo amonio con mezcla bactericida (Formulación actual)		
Fecha	Día	KOH núm.
09/10/2014	1	0,45
24/10/2014	16	0,52
05/11/2014	28	0,57
14/11/2014	37	0,62
27/11/2014	50	0,65
11/12/2014	64	0,70
24/12/2014	77	0,68
02/01/2015	86	0,70
15/01/2015	99	0,75

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 4.

Tabla XX. Ácidos grasos volátiles en látex alto amonio con nueva formulación

	VFA de látex alto amonio (Nueva formulación)	
Fecha	Día	VFA núm.
18/09/2014	1	0,009
25/09/2014	8	0,011
01/10/2014	14	0,013
07/10/2014	20	0,013
15/10/2014	28	0,014
23/10/2014	36	0,015
28/10/2014	41	0,015
04/11/2014	48	0,015
11/11/2014	55	0,016
19/11/2014	63	0,015
25/11/2014	69	0,016
02/12/2014	76	0,015
09/12/2014	83	0,017
16/12/2014	90	0,023
	VFA de látex alto amonio (Nueva formulación)	
Fecha	Día	VFA No.
23/12/2014	97	0.023
30/12/2014	104	0.023
13/01/2015	118	0.030

Tabla XXI. Ácidos grasos volátiles en látex alto amonio con formulación actual

VFA de látex alto amonio (Formulación actual)			
Fecha	Día	VFA núm.	
14/11/2014	1	0,011	
26/11/2014	13	0,011	
04/12/2014	21	0,011	
09/12/2014	26	0,011	
16/12/2014	33	0,015	
27/12/2014	44	0,015	
31/12/2014	48	0,016	
14/01/2015	62	0,018	
21/01/2015	69	0,020	

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 5.

Tabla XXII. Ácidos grasos volátiles en látex alto amonio normal con nueva formulación

VFA de látex alto amonio normal (Nueva formulación)			
Fecha	Día	VFA núm.	
26/09/2014	1	0,014	
02/10/2014	7	0,014	
07/10/2014	12	0,015	
15/10/2014	20	0,015	
23/10/2014	28	0,015	
28/10/2014	33	0,016	
05/11/2014	41	0,015	
12/11/2014	48	0,015	
19/11/2014	55	0,015	
25/11/2014	61	0,015	
02/12/2014	68	0,015	
09/12/2014	75	0,017	
23/12/2014	89	0,019	
30/12/2014	96	0,018	
13/01/2015	110	0,020	

Tabla XXIII. Ácidos grasos volátiles en látex alto amonio normal con formulación actual

VFA de látex alto amonio normal (Formulación actual)			
Fecha	Día	VFA núm.	
14/10/2014	1	0,013	
23/10/2014	10	0,014	
29/10/2014	16	0,015	
06/11/2014	24	0,015	
13/11/2014	31	0,017	
26/11/2014	44	0,021	
03/12/2014	51	0,028	
10/12/2014	58	0,039	
	VFA de látex alto amonio norm	al	
	(Formulación actual)		
Fecha	Día	VFA núm.	
27/12/2014	75	0,039	
31/12/2014	79	0,040	
14/01/2015	93	0,042	

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 5.

Tabla XXIV. Ácidos grasos volátiles en látex bajo amonio sin mezcla bactericida con nueva formulación

VFA de látex bajo amonio sin mezcla bactericida (Nueva formulación)			
Fecha	Día	VFA núm.	
06/11/2014	1	0,015	
12/11/2014	7	0,015	
19/11/2014	14	0,059	
26/11/2014	21	0,060	
03/12/2014	28	0,082	
10/12/2014	35	0,085	
26/12/2014	51	0,083	
31/12/2014	56	0,083	
16/01/2015	72	0,088	
23/01/2015	79	0,091	

Tabla XXV. Ácidos grasos volátiles en látex bajo amonio con mezcla bactericida con formulación actual

VFA de látex bajo amonio con mezcla bactericida (Formulación actual)		
Fecha	Día	VFA núm.
09/10/2014	1	0,012
23/10/2014	15	0,015
29/10/2014	21	0,016
07/11/2014	30	0,019
14/11/2014	37	0,024
28/11/2014	51	0,024
05/12/2014	58	0,027
10/12/2014	63	0,029
27/12/2014	80	0,035
31/12/2014	84	0,035
14/01/2015	98	0,038

Tabla XXVI. Tiempo de estabilidad mecánica en látex alto amonio sin laureato de amonio con nueva formulación

MST látex alto amonio sin laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
18/09/2014	1	42
25/09/2014	8	89
04/10/2014	17	223
10/10/2014	23	240
17/10/2014	30	258
31/10/2014	44	454
07/11/2014	51	515
14/11/2014	58	558
28/11/2014	72	672
05/12/2014	79	676
22/12/2014	96	693

Continuación de la tabla XXVI.

MST látex alto amonio sin laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
31/12/2014	105	722
08/01/2015	113	803
20/01/2015	125	895

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 6.

Tabla XXVII. Tiempo de estabilidad mecánica en látex alto amonio con laureato de amonio con nueva formulación

MST látex alto amonio con laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
18/09/2014	1	34
25/09/2014	8	111
03/10/2014	16	187
10/10/2014	23	328
17/10/2014	30	351
31/10/2014	44	502
06/10/2014	50	540
14/11/2014	58	570
28/11/2014	72	748
03/12/2014	77	750
23/12/2014	97	821
30/12/2014	104	815
08/01/2015	113	872
20/01/2015	125	960

Tabla XXVIII. Tiempo de estabilidad mecánica en látex alto amonio sin laureato de amonio con formulación actual

MST látex alto amonio sin laureato de amonio (Formulación actual)		
Fecha	Día	MST [s]
24/09/2014	1	24
03/10/2014	10	107
10/10/2014	17	194
17/10/2014	24	247
31/10/2014	38	472
07/11/2014	45	480
21/11/2014	59	490
28/11/2014	66	527
05/12/2014	73	554
22/12/2014	90	595
31/12/2014	99	631
08/01/2015	107	734
20/01/2015	119	903

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 6.

Tabla XXIX. Tiempo de estabilidad mecánica en látex alto amonio con laureato de amonio con formulación actual

MST látex alto amonio con laureato de amonio (Formulación actual)		
Fecha	Día	MST [s]
14/11/2014	1	64
28/11/2014	15	397
05/12/2014	22	456
12/12/2014	29	534
22/12/2014	39	667
08/01/2015	56	698
13/01/2015	61	742
20/01/2015	68	775

Tabla XXX. Tiempo de estabilidad mecánica en látex alto amonio normal sin laureato de amonio con nueva formulación

MST látex alto amonio normal sin laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
26/09/2014	1	36
04/10/2014	9	78
10/10/2014	15	110
17/10/2014	22	157
31/10/2014	36	198
07/11/2014	43	218
14/11/2014	50	246
28/11/2014	64	250
05/12/2014	71	255
22/12/2014	88	268
31/12/2014	97	318
20/01/2015	117	420

Tabla XXXI. Tiempo de estabilidad mecánica en látex alto amonio normal con laureato de amonio con nueva formulación

MST látex alto amonio normal con laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
26/09/2014	1	41
04/10/2014	9	557
10/10/2014	15	791
17/10/2014	22	1 634
31/10/2014	36	1 955
07/11/2014	43	2 108
14/11/2014	50	2 128
21/11/2014	57	2 160
28/11/2014	64	2 270
05/12/2014	71	2 274

Continuación de la tabla XXXI.

MST látex alto amonio normal con laureato de amonio (Nueva formulación)		
Fecha	Día	MST [s]
22/12/2014	88	2 343
31/12/2014	97	2 473
20/01/2015	117	2 438

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 6.

Tabla XXXII. Tiempo de estabilidad mecánica en látex alto amonio normal sin laureato de amonio con formulación actual

MST látex alto amonio normal sin laureato de amonio (Formulación actual)		
Fecha	Día	MST [s]
24/09/2014	1	24
03/10/2014	10	76
17/10/2014	24	171
31/10/2014	38	236
07/11/2014	45	244
21/11/2014	59	266
28/11/2014	66	312
12/12/2014	80	391
22/12/2014	90	398
31/12/2014	99	410
20/01/2015	119	485

Tabla XXXIII. Tiempo de estabilidad mecánica en látex alto amonio normal con laureato de amonio con formulación actual

MST látex alto amonio normal con laureato de amonio (Formulación actual)		
Fecha	Día	MST [s]
14/10/2014	1	60
24/10/2014	11	74
31/10/2014	18	157
07/11/2014	25	163
21/11/2014	39	188
28/11/2014	46	196
12/12/2014	60	216
22/12/2014	70	238
31/12/2014	79	237
19/01/2015	98	269
22/01/2015	101	306

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 6.

Tabla XXXIV. Tiempo de estabilidad mecánica en látex bajo amonio sin mezcla bactericida con nueva formulación

MST látex bajo amonio normal sin mezcla bactericida (Nueva formulación)		
Fecha	Día	MST [s]
06/11/2014	1	48
14/11/2014	9	159
20/11/2014	15	164
27/11/2014	22	178
12/12/2014	37	187
22/12/2014	47	182
31/12/2014	56	186
20/01/2015	76	179

Tabla XXXV. Tiempo de estabilidad mecánica en látex bajo amonio con mezcla bactericida con formulación actual

MST látex bajo amonio normal con mezcla bactericida (Formulación actual)		
Fecha	Día	MST [s]
09/10/2014	1	40
23/10/2014	15	58
31/10/2014	23	93
07/11/2014	30	104
21/11/2014	44	118
28/11/2014	51	125
05/12/2014	58	123
10/12/2014	63	119
22/12/2014	75	117
31/12/2014	84	121
22/01/2015	106	133

Fuente: elaboración propia, con base en la recolección y ordenamiento de la información, apéndice 6.

3.8. Análisis estadístico

Se realizó análisis estadístico para determinar la tendencia de los resultados en relación a los parámetros establecidos, así como para comparar los resultados obtenidos.

3.8.1. Cálculos estadísticos

Para el análisis estadístico se determinó la dispersión de los resultados obtenidos, cuantificando la variación de los valores de los parámetros críticos de control del látex centrifugado: KOH, VFA y MST.

Media aritmética

Para el cálculo de la media aritmética se empleó la siguiente ecuación:

$$ar{x} = \sum_{i=1}^{n} rac{\mathbf{x}_i}{N}$$
 Ecuación (1)

Donde:

• \bar{x} : media aritmética

• $\sum_{i=1}^{n} x_i$: sumatoria de las corridas de la medición

N: número de corridas de la medición

Desviación estándar

La desviación estándar se calculó con el fin de indicar el grado de dispersión de los datos respecto al valor promedio obtenido.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$
 Ecuación (2)

Donde:

S: desviación estándar

 \bar{x} : media aritmética

x : corrida de la medición

N: número de corridas de la medición

Coeficiente de variación

El coeficiente de variación permitió indicar la relación entre el tamaño de la media y la variabilidad de la variable a estudiar.

$$\sigma = \frac{s}{X} * 100$$
 Ecuación (3)

Donde:

 \bar{x} : media aritmética

 σ : coeficiente de variación

s: desviación estándar

Error típico de la media

El error típico de la media se empleó para determinar la precisión de la media, cuando este es menor se indica mayor precisión de la media.

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$
 Ecuación (4)

Donde:

 $\sigma_{ar{X}}$: error típico de la media.

3.8.2. Resultados de los cálculos estadísticos

En la siguiente tabla se muestra el resultado de los cálculos estadísticos.

Tabla XXXVI. Número de KOH en látex alto amonio con nueva formulación

Número de KOH	
Media	0,54
Desviación estándar	0,047
Coeficiente de variación	8,69
Error típico de la media	0,013
Mínimo	0,44
Máximo	0,56

Tabla XXXVII. Número de KOH en látex alto amonio con formulación actual

Número de KOH		
Media	0,50	
Desviación estándar	0,046	
Coeficiente de variación	9,20	
Error típico de la media	0,015	
Mínimo	0,41	
Máximo	0,56	

Tabla XXXVIII. Número de KOH en látex alto amonio normal con nueva formulación

Número de KOH		
Media	0,668	
Desviación estándar	0,052	
Coeficiente de variación	7,84	
Error típico de la media	0,0145	
Mínimo	0,54	
Máximo	0,73	

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla XXXIX. Número de KOH en látex alto amonio normal con formulación actual

Número de KOH		
Media	0,577	
Desviación estándar	0,079	
Coeficiente de variación	13,75	
Error típico de la media	0,0251	
Mínimo	0,43	
Máximo	0,68	

Tabla XL. Número de KOH en látex bajo amonio sin mezcla bactericida con nueva formulación

Número de KOH	
Media	0,85
Desviación estándar	0,199
Coeficiente de variación	23,36
Error típico de la media	0,0702
Mínimo	0,53
Máximo	1,14

Tabla XLI. Número de KOH en látex bajo amonio con mezcla bactericida con formulación actual

Número de KOH	
Media	0,63
Desviación estándar	0,218
Coeficiente de variación	34,82
Error típico de la media	0,0727
Mínimo	0,45
Máximo	0,75

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla XLII. Ácidos grasos volátiles en látex alto amonio con nueva formulación A

Número de VFA		
Media	0,017	
Desviación estándar	0,005	
Coeficiente de variación	31,43	
Error típico de la media	0,0013	
Mínimo	0,009	
Máximo	0,030	

Tabla XLIII. Ácidos grasos volátiles en látex alto amonio con nueva formulación B

Número de VFA	
Media	0,014
Desviación estándar	0,003
Coeficiente de variación	24,04
Error típico de la media	0,0011
Mínimo	0,011
Máximo	0,020

Tabla XLIV. Ácidos grasos volátiles en látex alto amonio normal con nueva formulación

Número de VFA		
Media	0,016	
Desviación estándar	0,002	
Coeficiente de variación	11,39	
Error típico de la media	0,0005	
Mínimo	0,014	
Máximo	0,020	

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla XLV. Ácidos grasos volátiles en látex alto amonio normal con formulación actual

Número de VFA	
Media	0,026
Desviación estándar	0,012
Coeficiente de variación	46,87
Error típico de la media	0,0036
Mínimo	0,013
Máximo	0,042

Tabla XLVI. Ácidos grasos volátiles en látex bajo amonio sin mezcla bactericida con nueva formulación

Número de VFA	
Media	0,066
Desviación estándar	0,029
Coeficiente de variación	43,94
Error típico de la media	0,009
Mínimo	0,015
Máximo	0,091

Tabla XLVII. Ácidos grasos volátiles en látex bajo amonio con mezcla bactericida con formulación actual

Número de VFA	
Media	0,025
Desviación estándar	0,009
Coeficiente de variación	35,09
Error típico de la media	0,003
Mínimo	0,012
Máximo	0,038

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla XLVIII. Tiempo de estabilidad mecánica en látex alto amonio sin laureato de amonio (nueva formulación)

Tiempo de estabilidad mecánica	
Media	489
Desviación estándar	274,62
Coeficiente de variación	56,21
Error típico de la media	73,394
Mínimo	42
Máximo	895

Tabla XLIX. Tiempo de estabilidad mecánica en látex alto amonio con laureato de amonio (nueva formulación)

Tiempo de estabilidad mecánica	
Media	542
Desviación estándar	300,79
Coeficiente de variación	55,49
Error típico de la media	80,391
Mínimo	34
Máximo	960

Tabla L. Tiempo de estabilidad mecánica en látex alto amonio sin laureato de amonio (formulación actual)

Tiempo de estabilidad mecánica	
Media	458
Desviación estándar	252,38
Coeficiente de variación	55,07
Error típico de la media	69,998
Mínimo	24
Máximo	903

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla Ll. Tiempo de estabilidad mecánica en látex alto amonio con laureato de amonio (formulación actual)

Tiempo de estabilidad mecánica					
Media 555					
Desviación estándar	224,52				
Coeficiente de variación	40,49				
Error típico de la media	74,838				
Mínimo	64				
Máximo	775				

Tabla LII. Tiempo de estabilidad mecánica en látex alto amonio normal sin laureato de amonio (nueva formulación)

Tiempo de estabilidad mecánica				
Media 213				
Desviación estándar	106,5			
Coeficiente de variación	50,02			
Error típico de la media	30,732			
Mínimo	36			
Máximo	420			

Tabla LIII. Tiempo de estabilidad mecánica en látex alto amonio normal con laureato de amonio (nueva formulación)

Tiempo de estabilidad mecánica				
Media 1 782				
Desviación estándar	797,8			
Coeficiente de variación	44,76			
Error típico de la media	221,262			
Mínimo	41			
Máximo	2 438			

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla LIV. Tiempo de estabilidad mecánica en látex alto amonio normal sin laureato de amonio (formulación actual)

Tiempo de estabilidad mecánica					
Media 274					
Desviación estándar	144,308				
Coeficiente de variación	52,68				
Error típico de la media	43,510				
Mínimo	24				
Máximo	485				

Tabla LV. Tiempo de estabilidad mecánica en látex alto amonio normal con laureato de amonio (formulación actual)

Tiempo de estabilidad mecánica				
Media 191				
Desviación estándar	75,553			
Coeficiente de variación	39,50			
Error típico de la media	22,780			
Mínimo	60			
Máximo	306			

Tabla LVI. Tiempo de estabilidad mecánica en látex bajo amonio sin mezcla bactericida (nueva formulación)

Tiempo de estabilidad mecánica				
Media 160				
Desviación estándar	46,50			
Coeficiente de variación	28,99			
Error típico de la media	16,439			
Mínimo	48			
Máximo	179			

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla LVII. Tiempo de estabilidad mecánica en látex bajo amonio con mezcla bactericida (formulación actual)

Tiempo de estabilidad mecánica					
Media 105					
Desviación estándar	29,75				
Coeficiente de variación	28,43				
Error típico de la media	8,970				
Mínimo	40				
Máximo	133				

3.8.3. Análisis de varianza (Anova)

Se realizó un análisis de varianza que permite determinar si existe una relación significativa entre los factores que influyen en los resultados del estudio.

En el presente proyecto se analizó el efecto de un factor sobre una variable respuesta, obteniendo un experimento unifactorial. El factor que incide sobre la variable respuesta es el tipo de látex trabajado. La variable respuesta es la variación de las variables críticas de control respecto al tiempo.

Tabla LVIII. Experimento de un factor para el número de KOH según el tipo de látex

	FACTOR A			
	TIPO DE LÁTEX			
Variable crítica	Látex alto amonio Látex alto amonio normal Látex bajo amonio			
ΔΚΟΗ/Δt	0,0081	0,0103	0,0157	
ΔΚΟΙ Ι/Δι	0,0080	0,0087	0,0099	
TOTAL	0,0161	0,0190	0,0256	
PROMEDIO	0,0081	0,0095	0,0128	

Fuente: elaboración propia, con base en cálculos estadísticos.

Tabla LIX. Análisis de varianza de un factor con varias muestras para el número de KOH según el tipo de látex

Origen de las variaciones	Suma de cuadrados	Grados de	Promedio de los	F	Probabilidad	Valor crítico
variaciones	cuaurauos	libertad	cuadrados			para F
Entre grupos	2,337 E-05	2	1,168 E-05	1,905	0,2922	9,552
Dentro de los grupos	1,839 E-05	3	6,132 E-06			
Total	4,177 E-05	5				

Fuente: elaboración propia, con base en análisis estadísticos tabla LVIII.

Según los resultados obtenidos del análisis de varianza anova, para determinar el rechazo de las hipótesis estadísticas planteadas se empleó una distribución F de Fisher, con un nivel de confianza del 95 % con el fin de encontrar la F crítica, y compararla con la F calculada de acuerdo al criterio:

- Si F calculada > F crítica, se rechaza la hipótesis nula y se acepta la hipótesis alternativa.
- Si F calculada < F crítica, se acepta la hipótesis nula y se rechaza la hipótesis alternativa.

Tabla LX. Conclusión de análisis de varianza de un factor para el número de KOH según el tipo de látex

Variable crítica	F calculada	F crítica	Conclusión	
ΔΚΟΗ/Δt	1,905	9,552	Se acepta la hipótesis nula: No existe diferencia significativa en la razón de aumento en el tiempo del núm. KOH en función al tipo de látex centrifugado.	

Fuente: elaboración propia, con base en cálculos estadísticos, tabla LIX.

Tabla LXI. Experimento de un factor para el número de VFA según el tipo de látex

	FACTOR A				
	TIPO DE LÁTEX				
Variable crítica	Látex alto amonio Látex alto amonio normal Látex bajo ar				
ΔVFA/Δt	0,00023	0,00023	0,00120		
0,00029	0,00056	0,00046			
TOTAL	0,00051	0,00079	0,00166		
PROMEDIO	0,00026	0,00039	0,00083		

Tabla LXII. Análisis de varianza de un factor con varias muestras para el número de VFA según el tipo de látex

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	3,565 E-07	2	1,782 E-07	1,613	0,3344	9,552
Dentro de los grupos	3,315 E-07	3	1,105 E-07			
Total	6,880 E-07	5				

Fuente: elaboración propia, con base en análisis estadísticos tabla LXI.

Tabla LXIII. Conclusión de análisis de varianza de un factor para el número de VFA según el tipo de látex

Variable crítica	F calculada	F crítica	Conclusión
ΔVFA/Δt	1,613	9,552	Se acepta la hipótesis nula: No existe diferencia significativa en la razón de aumento en el tiempo del núm. VFA en función al tipo de látex centrifugado.

Fuente: elaboración propia, con base en cálculos estadísticos, tabla LXII.

Tabla LXIV. Experimento de un factor para el MST según el tipo de látex

	FACTOR A				
	TIPO DE LÁTEX				
Variable crítica	Látex alto amonio	Látex alto amonio normal	Látex bajo amonio		
ΔMST/Δt	9,00	32,44	2,60		
	11,07	3,40	1,69		
TOTAL	20,07	35,84	4,29		
PROMEDIO	10,04	17,92	2,14		

Tabla LXV. Análisis de varianza de un factor con varias muestras para el MST según el tipo de látex

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	248,963	2	124,481	0,880	0,5003	9,552
Dentro de los grupos	424,307	3	141,435			
Total	673,270	5				

Fuente: elaboración propia, con base en análisis estadísticos tabla LXIV.

Tabla LXVI. Conclusión de análisis de varianza de un factor para el número MST según el tipo de látex

Variable crítica	F calculada	F crítica	Conclusión
			Se acepta la hipótesis nula:
			No existe diferencia significativa en
ΔMST/Δt	0,880	9,552	la razón de aumento en el tiempo
			del MST en función al tipo de látex
			centrifugado.

Fuente: elaboración propia, con base en cálculos estadísticos, tabla LXV.

Se realizó otro análisis de varianza determinando si el factor del químico adicionado incidió en los resultados obtenidos para tiempo de estabilidad mecánica.

Tabla LXVII. Experimento de un factor para el MST de látex según los químicos adicionados

	FACTOR A					
		QUÍMICO ADICIONADO				
Variable crítica	Látex alto amonio sin laureato de amonio	Látex alto amonio con laureato de amonio	Látex alto amonio normal sin laureato de amonio	Látex alto amonio normal con laureato de amonio		
ΔMST/Δt	6,88	7,47	3,31	20,66		
ΔΙνίδ 1/Δι	7,45	10,61	3,91	2,46		
TOTAL	14,33	18,08	7,22	23,12		
PROMEDIO	7,165	9,040	3,610	11,560		

Tabla LXVIII. Análisis de varianza de un factor con varias muestras para el MST de látex según los químicos adicionados

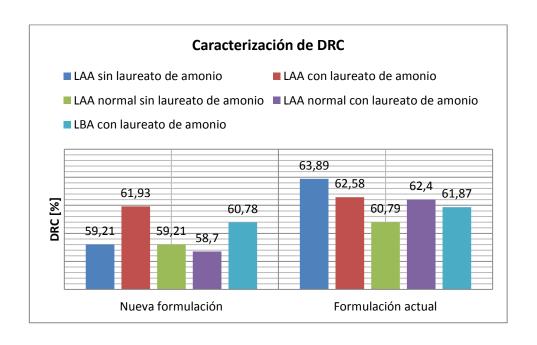
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	67,252	3	22,417	0,524	0,688	16,694
Dentro de los grupos	170,905	4	42,726			
Total	238,158	7				

Fuente: elaboración propia, con base en análisis estadísticos tabla LXVII.

Tabla LXIX. Conclusión de análisis de varianza de un factor para el tiempo de estabilidad mecánica de látex según los químicos adicionados

Variable crítica	F calculada	F crítica	Conclusión
ΔMST/Δt	0,524	16,694	Se acepta la hipótesis nula: No existe diferencia significativa en el comportamiento del tiempo de estabilidad mecánica del látex alto amonio en función a la concentración de laureato de amonio adicionado

Fuente: elaboración propia, con base en cálculos estadísticos, tabla LXVIII.


4. **RESULTADOS**

A continuación se presentan los resultados obtenidos en la elaboración del presente estudio. Se presenta la información detallada de la caracterización de materia prima así como la tendencia de las variables críticas de control del látex alto y bajo amonio.

4.1. Resultado núm. 1. Caracterización de la materia prima

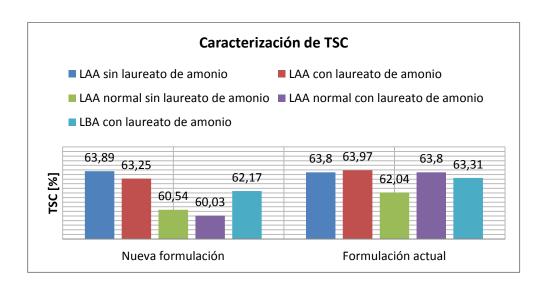

En la siguiente figura se presenta el resultado núm. 1.

Figura 7. Caracterización del contenido de hule seco (%DRC)

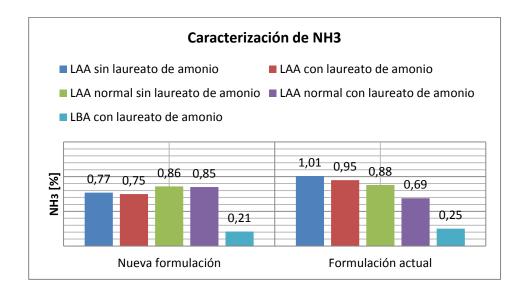

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI - XIII.

Figura 8. Caracterización del contenido de sólidos totales (%TSC)

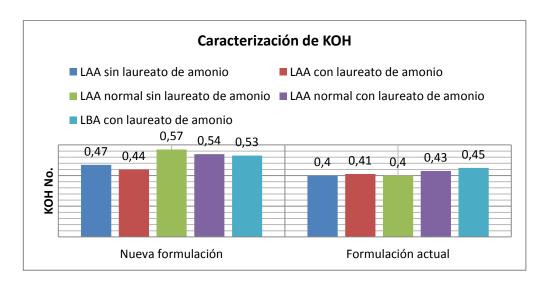

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI - XIII.

Figura 9. Caracterización del contenido de amoníaco (%NH₃)

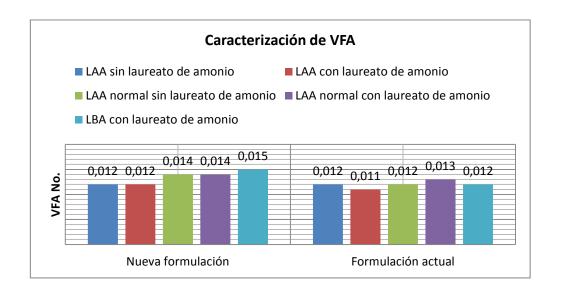

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI - XIII.

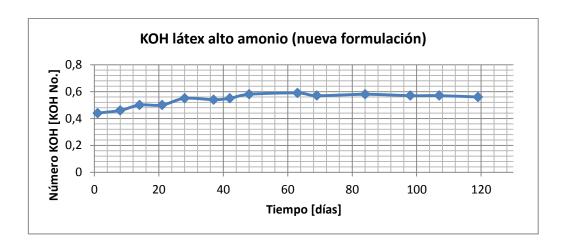
Figura 10. Caracterización de número de KOH (KOH núm.)

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI – XIII.

Figura 11. Caracterización de ácidos grasos volátiles (VFA núm.)

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI - XIII.

Caracterización de MST ■ LAA sin laureato de amonio ■ LAA con laureato de amonio ■ LAA normal sin laureato de amonio ■ LAA normal con laureato de amonio ■ LBA con laureato de amonio 64 60 48 42 41 40 MST [s] 36 34 24 24 Nueva formulación Formulación actual


Figura 12. Caracterización de tiempo de estabilidad mecánica (MST)

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XI - XIII.

4.2. Resultado núm. 2. Correlación gráfica entre número de KOH vs. tiempo de almacenamiento

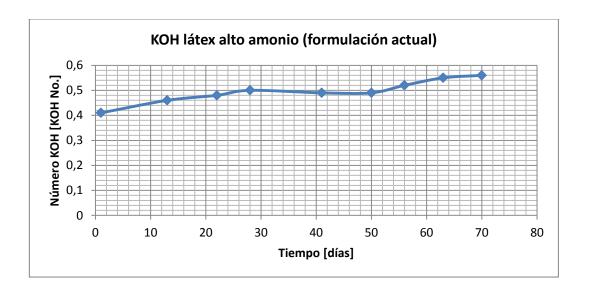

En las siguientes figuras se presentaran los resultados correlacionados de las gráficas entre número de KOH vs. tiempo de almacenamiento.

Figura 13. Látex alto amonio con nueva formulación

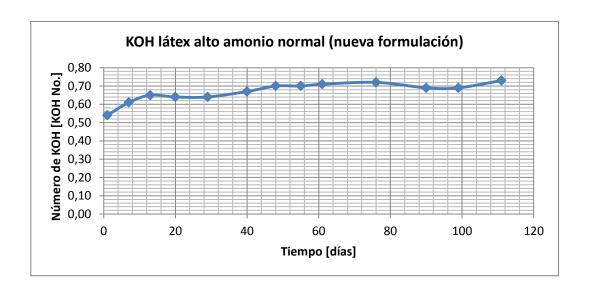
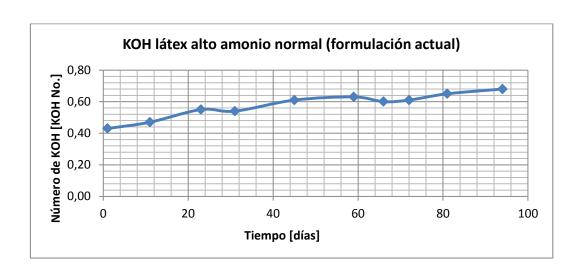

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XIV.

Figura 14. Látex alto amonio con formulación actual

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XV.


Figura 15. Látex alto amonio normal con nueva formulación

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XVI.

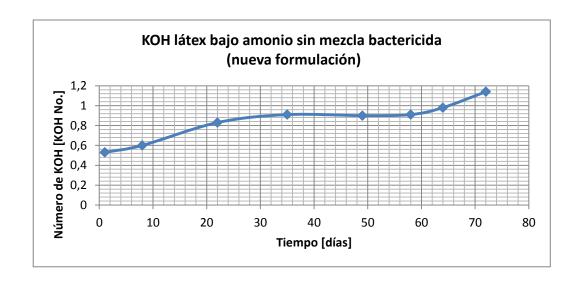

9

Figura 16. Látex alto amonio normal con formulación actual

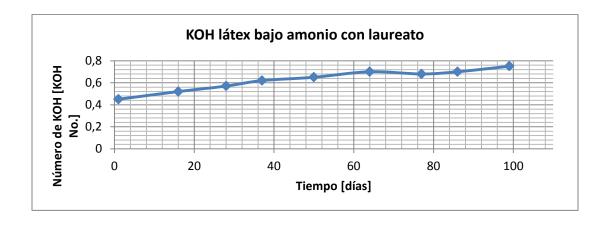
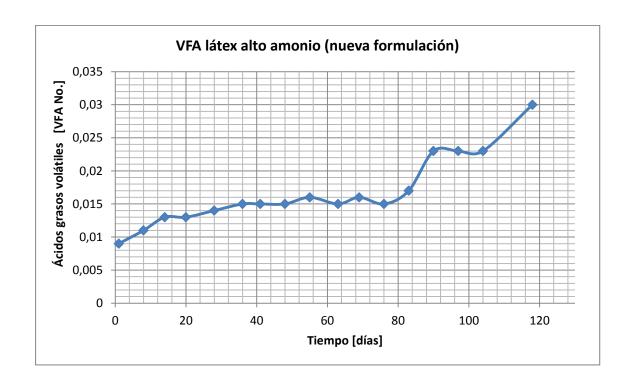

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XVII.

Figura 17. Látex bajo amonio sin mezcla bactericida con nueva formulación

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XVIII.

Figura 18. Látex bajo amonio con mezcla bactericida con formulación actual



Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XIX.

4.3. Resultado núm. 3. Correlación gráfica entre el VFA vs. tiempo de almacenamiento

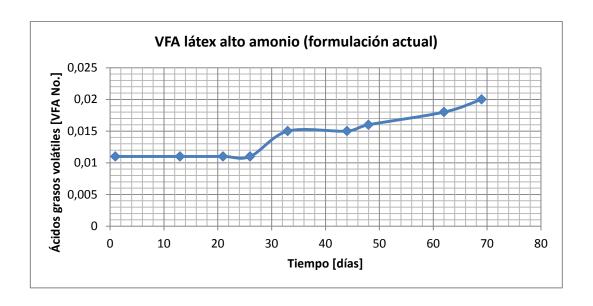

En la siguiente figura se presenta el resultado núm. 3.

Figura 19. Látex alto amonio con nueva formulación

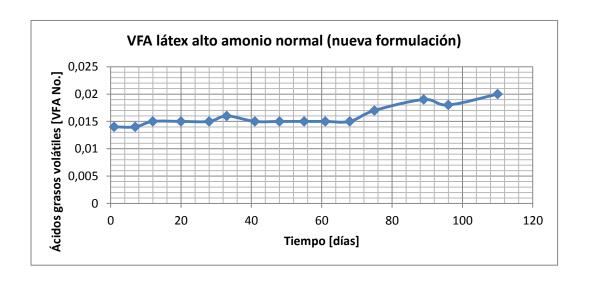

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XX.

Figura 20. VFA látex alto amonio con formulación actual

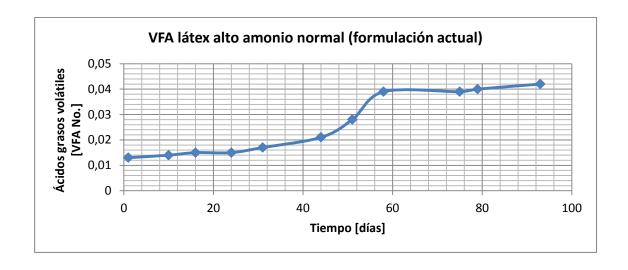

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXI.

Figura 21. VFA látex alto amonio normal con nueva formulación

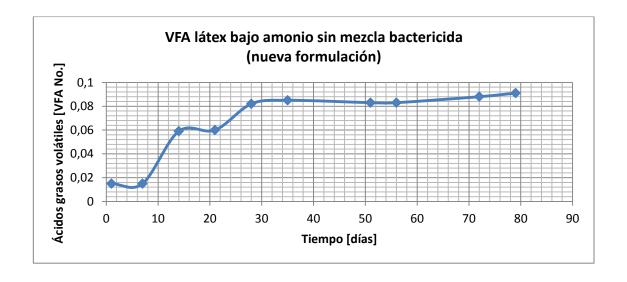

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXII.

Figura 22. VFA látex alto amonio normal con formulación actual

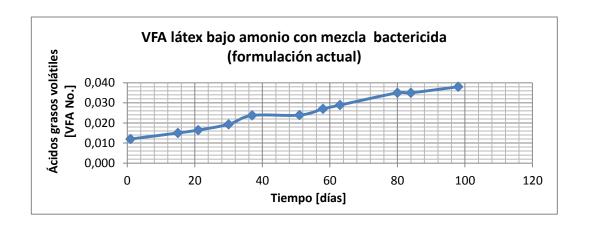
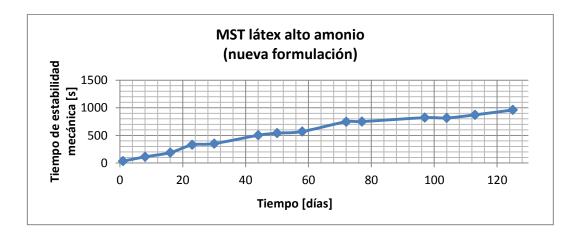

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXIII.

Figura 23. VFA látex bajo amonio sin mezcla bactericida con nueva formulación

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXIV.


Figura 24. VFA látex bajo amonio con mezcla bactericida con formulación actual

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXV.

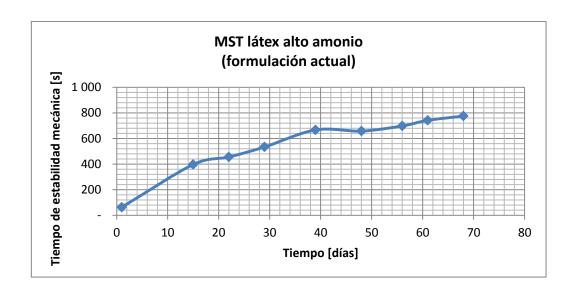

4.4. Resultado núm. 4. Correlación gráfica entre el MST vs. tiempo de almacenamiento

Figura 25. MST látex alto amonio con nueva formulación

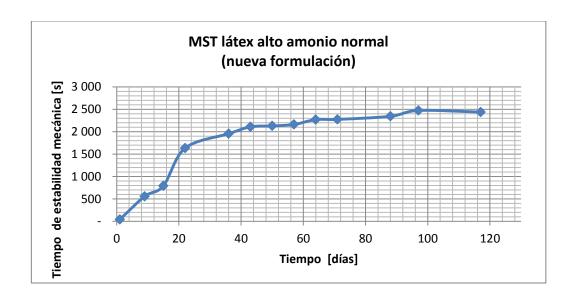

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXVII.

Figura 26. MST látex alto amonio con formulación actual

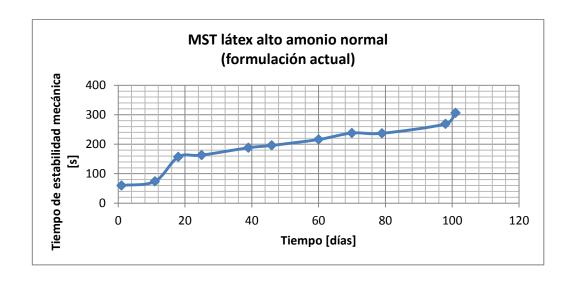

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXIX.

Figura 27. MST látex alto amonio normal con nueva formulación

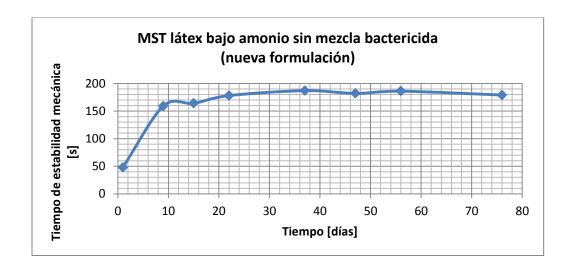

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXXI.

Figura 28. MST látex alto amonio normal con formulación actual

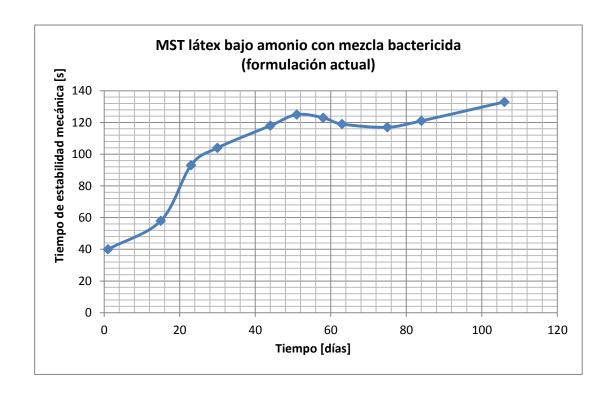
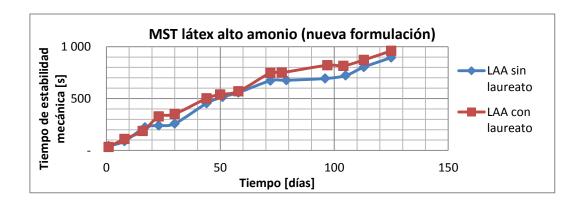

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXXIII.

Figura 29. **MST látex bajo amonio sin mezcla bactericida con nueva** formulación

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXXIV.

Figura 30. MST látex bajo amonio con mezcla bactericida con formulación actual



Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tabla XXXV.

4.5. Resultado núm. 5. Comparación gráfica entre MST de látex alto amonio vs. químicos añadidos como preservantes

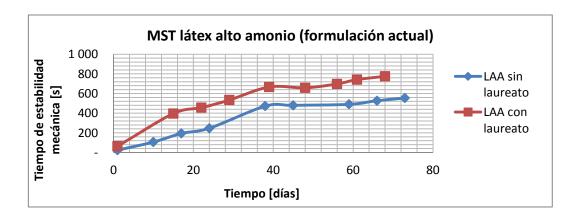

En la siguiente figura se presenta el resultado núm. 5.

Figura 31. MST látex alto amonio sin laureato de amonio y con laureato de amonio con nueva formulación

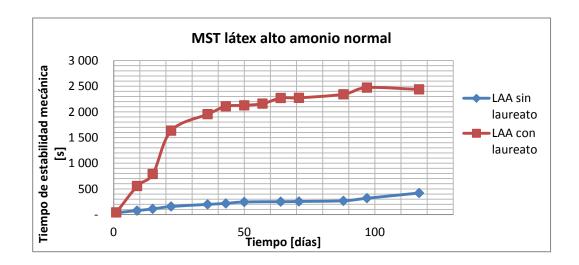

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XXVI – XXVII.

Figura 32. MST látex alto amonio sin laureato de amonio y con laureato de amonio con formulación actual

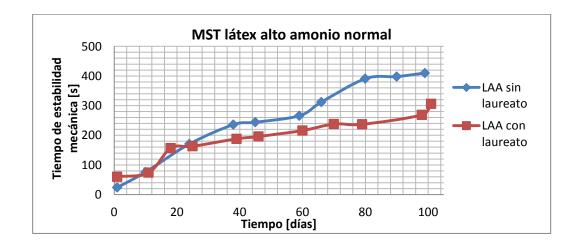

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XXVI – XXVII.

Figura 33. MST látex alto amonio normal sin laureato de amonio y con laureato de amonio con nueva formulación

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XXX – XXXI.

Figura 34. MST látex alto amonio normal sin laureato de amonio y con laureato de amonio con formulación actual

Fuente: elaboración propia, con base en tabulación, ordenamiento y procesamiento de la información, tablas XXXII – XXXIII.

5. INTERPRETACIÓN DE RESULTADOS

El presente proyecto de investigación de Ejercicio Profesional Supervisado consistió en determinar el comportamiento de las variables críticas de control; número de KOH (KOH núm.), ácidos grasos volátiles (VFA núm.) y tiempo de estabilidad mecánica (MST) en látex centrifugado de alto amonio y bajo amonio en función, tanto al tiempo de almacenamiento como de los químicos que se adicionan para la adecuada preservación de los mismos.

Para este estudio se recolectó materia prima de "Industrias de Látex, S. A." en Río Bravo, Suchitepéquez, utilizando las formulaciones, métodos de producción y tipos de látex manejados en esta empresa, como se muestra en el apéndice 1, en la sección de preparación y recolección de materia prima.

Posteriormente a la recolección de la materia prima, se realizó la caracterización de las muestras de látex por medio de análisis fisicoquímicos a escala laboratorio. La caracterización del látex se muestra en las figuras 7 – 12 de la sección de resultados, en las cuales se realiza una comparación gráfica de los valores iniciales de las variables fisicoquímicas del látex, mostrando que para todas las variables se obtuvieron valores dentro de los rangos permitidos para Industrias de Látex, S. A.

A partir del inicio de los días de maduración del látex se procedió a realizar análisis fisicoquímicos periódicamente, con el fin de determinar el comportamiento de las tres variables críticas de control según la maduración del látex. Tanto para látex alto amonio como para látex bajo amonio se trabajó con

dos formulaciones distintas; una nueva formulación como prueba, y la formulación con la que actualmente se trabaja en Industrias de Látex, S. A.

En las figuras 13 – 18 de la sección de resultados se muestra el comportamiento del número de KOH en látex alto amonio y bajo amonio en función al tiempo de maduración del látex. Todas las figuras muestran una tendencia similar; en el que el número de KOH es directamente proporcional al tiempo de maduración del látex, es decir, que al aumentar el tiempo de maduración incrementa el número de KOH.

El número de KOH indica la cantidad de radicales ácidos no volátiles presentes en el látex, los cuales se forman a partir de actividad bacteriana dentro del mismo. Las bacterias presentes en el látex se alimentan de las proteínas del mismo desprendiendo así radicales ácidos no volátiles, por lo que al presentar un mayor número de KOH, este indica mayor cantidad de radicales ácidos presentes, es decir, mayor cantidad de bacterias en el látex.

Para las muestras trabajadas, se muestran distintos incrementos del número de KOH, obteniendo un menor incremento en el látex centrifugado alto amonio con nueva formulación, obteniendo valores desde 0,44 – 0,56, y un mayor incremento en el látex bajo amonio sin mezcla bactericida obteniendo valores que aumentan desde 0,53 hasta obtener 1,14.

En las figuras 19 – 24 de la sección de resultados se muestra el comportamiento de los ácidos grasos volátiles (VFA núm.) presentes en el látex centrifugado alto y bajo amonio. Todas las figuras muestran el mismo comportamiento de dicha variable crítica, en donde el VFA núm. es directamente proporcional al tiempo de maduración del látex.

Los ácidos grasos volátiles, al igual que el número de KOH, indican una cantidad de radicales ácidos presentes en el látex formados a partir de actividad bacteriana, sin embargo, estos radicales ácidos son volátiles, por lo que deben ser previamente destilados del suero del látex. Así que al presentar una mayor cantidad de ácidos grasos volátiles se indica que existe mayor presencia de bacterias en el látex que permiten la formación de dichos radicales ácidos.

Para las muestras trabajadas se presentan distintos incrementos en el VFA núm., mostrando un menor incremento en el látex centrifugado alto amonio normal con nueva formulación, ya que este aumenta desde 0,014 hasta 0,020, mientras que el látex bajo amonio sin mezcla bactericida presenta un mayor aumento en el VFA núm, ya que este incrementa desde 0,015 hasta 0,091.

Tanto el número de KOH como el número de VFA incrementan al aumentar el tiempo de almacenamiento del látex, indicando así que la presencia de bacterias que permiten la formación de radicales ácidos aumenta conforme transcurre el tiempo de maduración del látex. Sin embargo, se obtuvo un mayor incremento en el VFA núm., que en el KOH núm., concluyendo así que las bacterias presentes en el látex generan cantidades mayores de radicales ácidos volátiles que de radicales ácidos no volátiles.

En las figuras 25 – 30 de la sección de resultados se muestra el comportamiento del tiempo de estabilidad mecánica (MST) en látex centrifugado alto amonio y bajo amonio. Este tiempo indica los segundos que tarda el látex en coagularse.

Para todas las figuras se muestra el mismo comportamiento de dicha variable crítica de control, en el que el tiempo de estabilidad mecánica es directamente proporcional al tiempo de maduración del látex. Sin embargo,

cuando se alcanza cierto punto de sus días de maduración, el MST, a pesar de seguir aumentando, permanece casi constante.

El látex centrifugado contiene lípidos que en la presencia de amonio se hidrolizan y degradan en jabones de ácidos grasos superiores, estos jabones se adsorben en la superficie del látex, causando un incremento en las cargas negativas, permitiendo así que aumente el tiempo en que el látex se coagula, es decir el tiempo de estabilidad mecánica.

Por ello, al finalizar la hidrólisis de los lípidos contenidos en el látex ya no aumenta significativamente el tiempo de estabilidad mecánica sino permanece casi constante, o incrementando en menores cantidades.

Para las muestras trabajadas se obtuvieron distintos incrementos, obteniendo un tiempo de estabilidad mecánica máximo de 2 438 segundos en el látex alto amonio normal con nueva formulación y un tiempo de estabilidad mínimo de 133 segundos para el látex bajo amonio con mezcla bactericida.

Posteriormente se realizó un análisis comparativo entre el tiempo de estabilidad mecánica en látex alto amonio cuando a este se le agrega laureato de amonio y cuando no se le agrega laureato de amonio. Esta comparación se encuentra en las figuras 31 – 34 de la sección de resultados.

En las figuras 31 – 33 se muestra que las muestras con laureato de amonio presentaron un mayor tiempo de estabilidad mecánica que las muestras sin laureato de amonio, mientras que en la figura 34 se muestra lo contrario, en el que la muestra sin laureato de amonio presentó un mayor tiempo de estabilidad mecánica que la muestra con laureato de amonio.

El laureato de amonio actúa en el látex centrifugado como un estabilizador, permitiendo que las partículas del látex no colisionen entre ellas para coagularse, por lo que al ser agregado a las muestras las mismas deberían presentar un tiempo de estabilidad mecánica mayor que las muestras a las que no se les agregó laureato de amonio.

Las figuras 31–33 presentan una tendencia congruente al comportamiento esperado según la bibliografía, en donde las muestras de látex con laureato de amonio obtuvieron un mayor tiempo de estabilidad mecánica, obteniendo una diferencia máxima de MST de 2 018 segundos en la muestra de látex alto amonio normal con nueva formulación, y una diferencia mínima de MST de 65 segundos para la muestra de látex alto amonio con formulación actual.

La figura 34 presenta el comportamiento del látex alto amonio con formulación actual, en donde el MST de la muestra sin laureato de amonio aumentó hasta obtener 485 segundos y la muestra con laureato de amonio solo aumentó hasta los 306 segundos. Este comportamiento no es congruente a lo indicado en la bibliografía, lo cual puede haber sido provocado por distintos factores que inciden en el comportamiento del MST; una mayor cantidad de magnesio presente en la muestra, mayor presencia de actividad bacteriana en el látex, incorrecta homogenización de la muestra, entre otros.

6. LOGROS OBTENIDOS

A continuación se presentan los logros obtenidos tanto en los 6 meses de realización del ejercicio profesional supervisado (EPS), así como al finalizar el mismo realizando los análisis de los datos.

- Se aportaron datos de número de KOH (KOH núm.) y número de ácidos grasos volátiles (VFA núm.) en fechas específicas de producción.
- Se determinaron algunos puntos críticos de control del proceso de producción de látex.
- Se emplearon los resultados obtenidos para determinar el momento óptimo de despacho de látex a clientes con especificaciones técnicas de venta establecidas.
- Se determinó la utilidad de realizar periódicamente análisis de alcalinidad de látex y contenido de magnesio ya que los mismos incidieron en los resultados obtenidos, y así agregar fosfato diamónico en función de la concentración de magnesio.
- Se determinó la necesidad de analizar el tiempo de estabilidad mecánica en función a concentración de laureato de amonio y no solo de cantidad agregada.

CONCLUSIONES

- El número de KOH (KOH núm.) aumenta proporcionalmente al tiempo de almacenamiento siendo el látex bajo amonio sin mezcla bactericida el que presentó un mayor incremento con 1,14.
- La cantidad de ácidos grasos volátiles (VFA núm.) aumenta proporcionalmente al tiempo de almacenamiento, siendo el látex bajo amonio sin mezcla bactericida el que tuvo un mayor incremento con 0,091.
- El tiempo de estabilidad mecánica (MST) aumenta proporcionalmente al aumentar el tiempo de almacenamiento, siendo el látex alto amonio normal con nueva formulación el que presentó un mayor incremento con 2 438 segundos.
- 4. El tiempo de estabilidad mecánica (MST) aumenta significativamente al adicionar laureato de amonio al látex; obteniendo pruebas que presentan una diferencia mínima de MST de 65 segundos en látex alto amonio y máxima de 2018 segundos en látex alto amonio normal.

RECOMENDACIONES

- Realizar análisis de alcalinidad del látex periódicamente, ya que la misma incide en la adecuada preservación del látex.
- 2. Evaluar los parámetros críticos de control del látex en función a la concentración de laureato de amonio agregado, ya que el mismo permite un aumento del tiempo de estabilidad mecánica del látex.
- 3. Realizar análisis de magnesio periódicamente, ya que el mismo incide en una reducción del tiempo de estabilidad mecánica del látex.
- 4. Añadir fosfato diamónico en el látex centrifugado en función a la concentración de magnesio presente en el mismo, ya que el fosfato aumenta el KOH.
- Identificar los puntos críticos de control del proceso de centrifugación para evitar una posible contaminación del látex que ocasionaría un crecimiento bacteriano (VFA, KOH).

BIBLIOGRAFÍA

- CAHUEQUE ACOSTA, Roberto Antonio. Evaluación de dos agentes coagulantes para látex natural, en la fabricación por inmersión de guante doméstico. Trabajo de graduación de Ing. Químico. Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 2008. 121 p.
- CHEN, Seong Fong, et al. Latex Concentrate Production and Introduction to Latex Product Manufacture. Malaysia: Rubber Research Institute of Malaysia, 1992. 204 p.
- JOHN, C. K., et al. LA TZ LatexConcentrate. 2a ed. Malasia: Rubber Research Institute of Malaysia, 1982. 22 p.
- 4. KEDDIE, Joseph. *Fundamentals of latex film formation.* USA: Springer, 2010. 297 p.
- MARTINEZ COVALEDA, Héctor. La cadena del caucho en Colombia.
 Colombia: Ministerio de Agricultura y Desarrollo Rural, 2005. 40 p.
- PALENCIA JUÁREZ, Carlos Vinicio. Manual general del cultivo del hule Hevea brasiliensis. Trabajo de graduación de Ing. Agrónomo. Universidad de San Carlos de Guatemala, Facultad de Agronomía, 2000. 119 p.

- 7. PERRY, Robert H, GREEN, Don. *Manual del ingeniero químico.* 4a ed. España: McGraw-Hill, 2001. Volumen I.
- 8. SALGUERO GARCÍA, Carlos Remberto. Estudio del comportamiento de la maduración del latex natural, producto en Guatemala, centrifugado, de alto amonio. Trabajo de graduación de Ing. Químico. Universidad de San Carlos de Guatemala, Facultad de Ingeniería, 1991. 45 p.
- 9. SMITH, Paul. *Organic Chemistry: an online tutorial* [en línea] http://www.chemstone.net/O_Chem/Conj_1.htm [Consulta: 14 de julio de 2014].

APÉNDICES

Apéndice 1. Recolección y ordenamiento de información del análisis fisicoquímico de número de KOH

Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregai [mL]
Alto amonio con nueva formulación	63,25	2,05	25,12	61,88
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ΔрН1	∆рН2
18/09/2014	80,022	7	0,04	-0,04
10/09/2014	80,067	8	0,03	-0,06
25/09/2014	80,058	8	0,05	-0,09
23/09/2014	80,013	8	0,06	-0,10
01/10/2014	80,069	8	0,07	-0,01
01/10/2014	80,043	9	0,00	-0,10
08/10/2014	80,061	8	0,10	-0,02
00/10/2014	80,054	9	0,01	-0,17
15/10/2014	80,039	9	0,11	-0,04
13/10/2014	80,071	10	0,03	-0,08
24/10/2014	80,057	9	0,06	-0,08
24/10/2014	80,047	9	0,09	-0,08
20/40/2044	80,022	9	0,02	-0,10
29/10/2014	80,064	10	0,04	-0,06
0.4/4.4/0.04.4	80,096	10	0,03	-0,07
04/11/2014	80,045	10	0,09	-0,03
10/11/2014	80,040	10	0,04	-0,06
19/11/2014	80,071	11	0,04	-0,11
05/44/0044	80,035	9	0,09	-0,02
25/11/2014	80,074	10	0,01	-0,05
00/40/0044	80,038	10	0,01	-0,09
09/12/2014	80,012	10	0,03	-0,09
0.4/4.0/00.4.4	80,073	10	0,02	-0,06
24/12/2014	80,049	10	0,02	-0,08
00/04/0045	80,029	10	0,04	-0,07
02/01/2015	80,046	10	0,04	-0,07
4.4/04/0045	80,058	10	0,07	-0,03
14/01/2015	80,046	10	0,04	-0,07
26/09/2014	80,046	9	0,06	-0,04
20/09/2014	80,012	10	0,07	-0,06
02/10/2014	80,049	10	0,02	-0,04
02/10/2014	80,027	10	0,05	-0,06
00/40/2044	80,042	11	0,03	-0,06
08/10/2014	80,075	11	0,00	-0,01
45/40/0044	80,059	12	0,01	-0,03
15/10/2014	80,057	13	0,00	-0,05
0.4/4.0/0.04.4	80,094	11	0,01	-0,01
24/10/2014	80,096	11	0,05	-0,03
04/11/2014	80.079	11	0,03	-0.05

Continuación del apéndice 1.

	80,076	11	0,06	-0,03
12/11/2014	80,034	13	0,02	-0,07
12/11/2014	80,049	12	0,00	-0.05
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Alto amonio normal con nueva formulación	60,03	2,13	26,33	60,67
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ΔрН1	∆рН2
19/11/2014	80,071	11	0,03	-0,02
19/11/2014	80,083	12	0,03	-0,05
25/11/2014	80,034	12	0,01	-0,03
25/11/2014	80,083	12	0,01	-0,05
10/12/2014	80,021	12	0,03	-0,02
10/12/2014	80,037	12	0,01	-0,04
24/12/2014	80,037	11	0,07	-0,03
24/12/2014	80,086	11	0,05	-0,01
02/01/2015	80,018	11	0,06	-0,02
02/01/2013	80,049	11	0,06	-0,02
14/01/2015	80,057	12	0,07	-0,08
14/01/2013	80,080	12	0,05	-0,06
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Bajo amonio sin mezcla bactericida con nueva formulación	62,17	0,56	0,89	86,11
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ΔрН1	∆рН2
06/11/2014	80,052	9	0,08	-0,02
00/11/2014	80,013	10	0,04	-0,06
13/11/2014	80,060	10	0,07	-0,01
13/11/2014	80,068	10	0,07	-0,03
27/11/2014	80,089	14	0,06	-0,02
27/11/2014	80,072	14	0,09	-0,02
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Bajo amonio sin	62,17	0,56	0,89	86,11
mezcla bactericida con nueva formulación Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ДрН1	∆рН2
24/12/2014	80,084	16	0,00	-0,04
24/12/2014	80,080	16	0,00	-0,05
02/01/2015	80,049	16	0,03	-0,07
02/01/2010	80,046	16	0,00	-0,06
08/01/2015	80,034	20	0,04	-0,02
00/01/2010	80,049	21	0,00	-0,02
16/01/2015	80,051	20	0,01	-0,06
10/01/2013	80,091	21	0,01	-0,08
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]

Continuación del apéndice 1.

Alto amonio con formulación actual	63,97	2,64	34,58	52,42
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ДрН1	ДрН2
4.4/4.4/004.4	80,085	8	0,04	-0,06
14/11/2014	80,045	8	0,05	-0,03
06/44/0044	80,048	8	0,04	-0,05
26/11/2014	80,047	8	0,02	-0,05
05/40/2044	80,011	8	0,03	-0,05
05/12/2014	80,034	9	0,02	-0,04
44/40/0044	80,052	8	0,09	-0,04
11/12/2014	80,040	9	0,01	-0,01
0.4/4.0/0.04.4	80,076	9	0,00	-0,05
24/12/2014	80,046	9	0,00	-0,04
00/04/0045	80,040	8	0,07	-0,01
02/01/2015	80,041	8	0,08	-0,02
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Alto amonio con	63,97	2,64	34,58	52,42
formulación actual Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	∆рН1	∆рН2
15/01/2015	80,097	10	0,08	-0,05
10/01/2010	80,052	9	0,07	-0,04
22/01/2015	80,012	9	0,05	-0,02
22/01/2010	80,038	10	0,05	-0,08
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Alto amonio normal con formulación actual	63,80	1,91	22,76	64,24
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	∆рН1	∆рН2
14/10/2014	80,023	8	0,04	-0,07
	80,049	<u>8</u> 8	0,05	-0,02
24/10/2014	80,084 80,025	8	0,06 0,05	-0,05 -0,05
	80,040	10	0,05	-0,08
05/11/2014	80,035	9	0,09	-0,02
12/11/2011	80,052	9	0,08	-0,07
13/11/2014	80,073	10	0,00	-0,03
27/11/2014	80,035	10	0,04	-0,01
2.720	80,016	11	0,02	-0,05
11/12/2014	80,079	11	0,06	-0,05
	80,038 80,039	11 11	0,04 0,00	-0,03 -0,07
18/12/2014	80,039	10	0,00	-0,07 -0,01
	80,072	10	0,07	-0,05
24/12/2014	80,080	10	0,07	-0,04
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Alto amonio normal	63,80	1,91	22,76	64,24
con formulación actual Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ΔрН1	ΔрН2
15/01/2015	80,036	12	0,06	-0,09
Tipo de látex	80,063 Contenido de sólidos totales (TSC)	12 NH3 contenido en agua [mL]	0,09 Formaldehído a agregar [mL]	-0,11 Agua a agregar [mL]

Continuación del apéndice 1.

Bajo amonio con mezcla bactericida con	63,31	0,68	2,94	84,06
formulación actual				
Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ДрН1	ΔрН2
00/40/2044	80,034	8	0,04	-0,06
09/10/2014	80,027	9	0,07	-0,03
24/10/2014	80,056	9	0,01	-0,04
24/10/2014	80,066	9	0,07	-0,09
05/11/2014	80,035	10	0,05	-0,03
05/11/2014	80,062	10	0,00	-0,07
4.4/4.4/004.4	80,017	11	0,01	-0,05
14/11/2014	80,055	11	0,02	-0,05
27/11/2014	80,030	11	0,08	-0,02
27/11/2014	80,052	11	0,05	-0,03
44/40/0044	80,092	12	0,07	-0,01
11/12/2014	80,078	12	0,02	-0,05
24/42/2044	80,071	12	0,02	-0,07
24/12/2014	80,066	12	0,02	-0,07
Tipo de látex	Contenido de sólidos totales (TSC)	NH3 contenido en agua [mL]	Formaldehído a agregar [mL]	Agua a agregar [mL]
Bajo amonio con	63,31	0,68	2,94	84,06
mezcla bactericida con formulación actual Fecha	Peso muestra [g]	Volumen de KOH gastados [mL]	ΔрН1	ΔрН2
15/01/2015	80,064	13	0,04	-0,04
13/01/2013	80,032	13	0,07	-0,01

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información.

Apéndice 2. Recolección y ordenamiento de información del análisis fisicoquímico de número de ácidos grasos volátiles (VFA)

Tipo de látex	Alto amonio con nueva formulación				
Fecha	Contenido de sólidos totales (TSC)	Masa de látex [g]	Concentración de Ba(OH)₂	Volumen de Ba(OH)₂ empleado [mL]	
18/09/2014		50,042		0,65	
25/09/2014		50,030		0,80	
01/10/2014		50,080		0,93	
07/10/2014		50,056		0,96	
15/10/2014		50,059		0,94	
23/10/2014		50,091		1,05	
28/10/2014		50,025		1,08	
04/11/2014	63,25	50,062	0,0049	1,05	
11/11/2014	03,23	50,093	0,0049	1,12	
19/11/2014		50,040		0,96	
02/12/2014		50,054		1,05	
09/12/2014		50,070		1,16	
16/12/2014		50,044		1,60	
23/12/2014		50,016		1,60	
30/12/2014		50,090		1,62	
13/01/2015		50,025		2,10	
Tipo de látex		Alto amonio norm	nal con nueva formulación		

Continuación del apéndice 2.

Fecha	Contenido de	Masa de látex	Concentración de	Volumen de Ba(OH) ₂
00/00/004	sólidos totales (TSC)	[g]	Ba(OH) ₂	empleado [mL]
26/09/2014	-	50,090		0,91
02/10/2014		50,064		0,95
07/10/2014	-	50,061		0,96
15/10/2014		50,076		0,95
23/10/2014		50,049		0,99
28/10/2014		50,056		1,07
05/11/2014		50,082		0,95
12/11/2014	60,03	50,044	0,0049	0,94
19/11/2014	00,00	50,072	0,0040	0,96
25/11/2014		50,055		0,99
02/12/2014		50,045		0,97
09/12/2014		50,030		1,08
16/12/2014		50,049		1,25
23/12/2014		50,031		1,19
30/12/2014		50,061		1,24
13/01/2015		50,077		1,32
Tipo de látex	Bajo	amonio sin mezcla b	actericida con nueva form	ulación
Fecha	Contenido de sólidos totales (TSC)	Masa de látex [g]	Concentración de Ba(OH) ₂	Volumen de Ba(OH) ₂ empleado [mL]
06/11/2014		50,030	\- /2	1,00
12/11/2014	1	50,053		1,02
19/11/2014	1	50,080		3,99
26/11/2014	1	50,082		4,12
03/12/2014		50,070	0,0049	5,59
10/12/2014	62,17	50,086		5,80
26/12/2014		50,053		5,55
31/12/2014	1	50,046		5,53
16/01/2015	1	50,035		5,99
23/01/2015	†	50,043		6,20
Tipo de látex			on formulación actual	0,20
-	Contenido de		Concentración de	Volumen de Ba(OH) ₂
Fecha	sólidos totales (TSC)	Masa de látex [g]	Ba(OH) ₂	empleado [mL]
14/11/2014	,	50,018	72	0,70
26/11/2014	1	50,028		0,82
04/12/2014	1	50,048		0,78
09/12/2014	1	50,041		0,81
16/12/2014	63,97	50,064	0,0049	1,05
27/12/2014	- 55,57	50,047	0,0010	1,08
31/12/2014	1	50,041		1,10
14/01/2015	1	50,056		1,25
21/01/2015	1	50.074		1,38
Tipo de látex		1 -	al con formulación actual	.,00
	Contenido de		Concentración de	Volumen de Ba(OH) ₂
Fecha	sólidos totales (TSC)	Masa de látex [g]	Ba(OH) ₂	empleado [mL]
14/10/2014		50,090		0,91
23/10/2014	1	50,090		0,98
29/10/2014	_	50,061		1,10
06/11/2014	_	50,077		1,08
13/11/2014	_	50,072		1,18
26/11/2014	63,80	50,074	0,0049	1,45
03/12/2014		50,020		1,95
10/12/2014]	50,069		2,65
27/12/2014		50,087		2,79
31/12/2014		50,049		2,81
14/01/2015		50,066		2,95

Continuación del apéndice 2.

Tipo de látex	Bajo amonio con mezcla bactericida con formulación actual				
Fecha	Contenido de sólidos totales (TSC)	Masa de látex [g]	Concentración de Ba(OH)₂	Volumen de Ba(OH) ₂ empleado [mL]	
09/10/2014		50,042		0,86	
23/10/2014		50,058		1,05	
29/10/2014		50,070		1,15	
07/11/2014		50,037		1,35	
14/11/2014		50,087		1,66	
28/11/2014	62,17	50,061	0,0049	1,67	
05/12/2014		50,073		1,88	
10/12/2014		50,043		2,02	
27/12/2014]	50,049		2,45	
31/12/2014]	50,057		2,48	
14/01/2015		50,036		2,67	

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información.

Apéndice 3. Recolección y ordenamiento de información del análisisfisicoquímico de número tiempo de estabilidad mecánica (MST)

Tipo de látex	Alto amonio sin laureato de amonio (Nueva formulación)				
Contenido de sólidos totales (TSC)	63,89 Amoníaco a agregar [g] 16,16				
Fecha	Peso de muestra [g]	Tiem	po [s]		
18/09/2014	100,039	4	2		
25/09/2014	100,090	8	9		
04/10/2014	100,075	22	23		
10/10/2014	100,050	24	40		
17/10/2014	100,023	25	58		
31/10/2014	100,054	45	54		
07/11/2014	100,062 515				
14/11/2014	100,057 558				
28/11/2014	100,058	67	72		
Tipo de látex	, i	Alto amonio sin laureato de amo (Nueva formulación)	nio		
Contenido de sólidos totales (TSC)	63,89	Amoníaco a agregar [g] 16,16			
Fecha	Peso de muestra [g]	Tiem	po [s]		
05/12/2014	100,055	6	76		
22/12/2014	100,030	69	93		
31/12/2014	100,041	100,041 722			
08/01/2015	100,029 803				
20/01/2015	100,063 895				
Tipo de látex	Alto amonio con laureato de amonio (Nueva formulación)				
Contenido de sólidos totales (TSC)	63,25	Amoníaco a agregar [g]	15,00		
Fecha	Peso de muestra [g]	Tiem	po [s]		

Continuación del apéndice 3.

18/09/2014	100,045	34	
25/09/2014	100,072	111	
03/10/2014	100,016	187	7
10/10/2014	100,054	328	3
17/10/2014	100,085	351	
31/10/2014	100,084	502	
06/10/2014	100,064	540	
14/11/2014	100,097	570	
28/11/2014	100,056	748	
	100,030	750	
03/12/2014 23/12/2014	100,030	821	
30/12/2014	100,043	815	
08/01/2015	100,034	872	
20/01/2015	100,049	960	
Tipo de látex	Alto amonio	sin laureato de amonio (Formula	ción actual)
Contenido de sólidos totales (TSC)	63,25	Amoníaco a agregar [g]	16,10
Fecha	Peso de muestra [g]	Tiempo	o [s]
24/09/2014	100,036	24	
03/10/2014	100,060	107	7
10/10/2014	100,039	194	1
17/10/2014	100,023	247	
31/10/2014	100,050	472	
07/11/2014	100,038	480)
21/11/2014	100,029	490	
28/11/2014	100,080	527	
05/12/2014	100,040	554	
22/12/2014	100,045	595	
31/12/2014	100,078	631	
08/01/2015	100,026	734	
20/01/2015	100,075	903	
Tipo de látex		con laureato de amonio (Formula	
Contenido de sólidos		, i	•
totales (TSC)	63,97	Amoníaco a agregar [g]	16,31
Fecha	Peso de muestra [g]	Tiempo	o [s]
14/11/2014	100,039	64	•
28/11/2014	100,088	397	
05/12/2014	100,073	456	
12/12/2014	100,073	534	
22/12/2014	100,032	667	
31/12/2014	100,064	658	
08/01/2015	100,004	698	
13/01/2015	100,098	742	
20/01/2015	100,024	742	
Tipo de látex	,	rmal sin laureato de amonio (Nue	
Contenido de sólidos		,	,
totales (TSC)	60,54	Amoníaco a agregar [g] 10,08	
Fecha	Peso de muestra [g]	Tiempo [s]	
26/09/2014	100,094	36	
04/10/2014	100,092	78	
10/10/2014	100,076	110	
17/10/2014	100,021	157	
31/10/2014	100,096	198	3
07/11/2014	100,077	218	3
14/11/2014	100,045	246	<u></u>
28/11/2014	100,043	250)
05/12/2014	100,061	255	
	, ,		

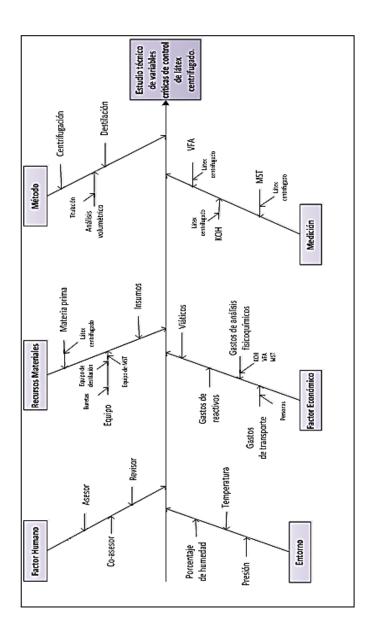
Continuación del apéndice 3.

22/12/2014	100,083	26	8
31/12/2014	100,057	31	
20/01/2015	100,072	42	
Tipo de látex		mal con laureato de amonio (Nu	
Contenido de sólidos		Thai con ladicate de amonio (14d)	eva formulación)
totales (TSC)	60,03	Amoníaco a agregar [g]	9,15
Fecha	Peso de muestra [g]	Tiemp	o [s]
26/09/2014	100,083	41	
04/10/2014	100,043	55	
10/10/2014	100,031	79	
17/10/2014	100,055	1 63	
31/10/2014	100,021	1 99	
07/11/2014	100,021	2 10	
14/11/2014	100,076	2 12	
21/11/2014	100,020	2 10	
28/11/2014	100,030	2 2	
22/12/2014	100,030	2 34	
20/01/2015	100,060	2 4	
Tipo de látex		rmal sin laureato de amonio (For	
Contenido de sólidos	Alto amonio noi	Thai sin laureato de amonio (Fon	mulacion actual)
totales (TSC)	62,04	Amoníaco a agregar [g]	12,80
Fecha	Peso de muestra [g]	Tiemp	• •
24/09/2014	100,036	24	
03/10/2014	100,060	76	
17/10/2014	100,082	17	
31/10/2014	100,067	23	
07/11/2014	100,068	244	
21/11/2014	100,047	26	
28/11/2014	100,046	31.	
12/12/2014	100,046	39	
22/12/2014	100,029	39	8
31/12/2014	100,038	41	0
20/01/2015	100,062	48	
Tipo de látex	Alto amonio nor	mal con laureato de amonio (For	mulación actual)
Contenido de sólidos	63,80	Amoníaco a agregar [g]	16,00
totales (TSC)	03,80	Amomaco a agregar [g]	10,00
Fecha	Peso de muestra [g]	Tiemp	o [s]
14/10/2014	100,047	60	
24/10/2014	100,061	74	1
31/10/2014	100,020	15	7
07/11/2014	100,051	16	
21/11/2014	100,057	18	
28/11/2014	100,061	19	
12/12/2014	100,049	21	
22/12/2014	100,027	23	
31/12/2014	100,018	23	7
19/01/2015	100,045	269	
22/01/2015	100,020	306	
Tipo de látex	Bajo amonio no	ormal sin mezcla bactericida (Nueva formulación)	
Contenido de sólidos totales (TSC)	62,17	Amoníaco a agregar [g]	13,04
Fecha	Peso de muestra [g]	Tiemp	o [s]
06/11/2014	100,049	48	
14/11/2014	100,057	15	
20/11/2014	100,024	16	
27/11/2014	100,024		
		178 187	
12/12/2014	100,063	18	,

Continuación del apéndice 3.

22/12/2014	100,018	182	
31/12/2014	100,039	186	
20/01/2015	100,073	179	
Tipo de látex	Bajo amonio no	rmal con mezcla bactericida (Formul	ación actual)
Contenido de sólidos totales (TSC)	63,31	Amoníaco a agregar [g] 15,11	
Fecha	Peso de muestra [g]	Tiempo [s	s]
09/10/2014	100,049	40	
23/10/2014	100,026	58	
31/10/2014	100,096	93	
07/11/2014	100,049	104	
21/11/2014	100,096	118	
28/11/2014	100,045	125	
05/12/2014	100,023	123	
10/12/2014	100,075	119	
22/12/2014	100,028	117	
31/12/2014	100,012	121	
22/01/2015	100,095	133	

Fuente: elaboración propia, con base en las técnicas cuantitativas de la información.


ANEXOS

Anexo 1. Tabla de requisitos académicos.

CARRERA	ÁREA	CURSO	TEMA
LICENCIATURA EN INGENIERÍA QUÍMICA	O (viv	Análisis instrumental	Métodos analíticos
	Química	Química orgánica	Nomenclatura y propiedades de los compuestos orgánicos.
	Operaciones unitarias	Transferencia de masa (IQ – 4)	Difusión y destilación
		Operaciones unitarias complementarias (IQ – 6)	Centrifugación, mezclado y tamizado.
	Fisicoquímica	Termodinámica 4	Destilación
	Ciencias básicas y	Estadística 2	Análisis estadístico.
	complementarias. EPS.	Seminario de EPS.	Investigación.

Fuente: Laboratorio Industrias de Látex, S. A.

Anexo 2. Diagrama de Ishikawa

Fuente: Laboratorio Industrias de Látex, S. A.

Anexo 3. Fotografías de la preparación y recolección de materia prima

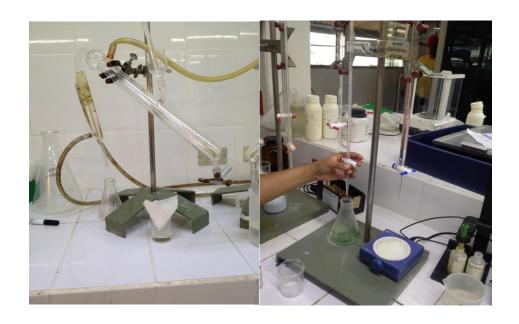
Fuente: Industrias de Látex, S. A.

Anexo 4. Fotografías del equipo utilizado en los análisis fisicoquímicos

Continuación del anexo 4.

Fuente: Laboratorio Industrias de Látex, S. A.

Anexo 5. Fotografías de los análisis fisicoquímicos de laboratorio


Continuación del anexo 5.

Continuación del anexo 5.

Continuación del anexo 5.

Fuente: Laboratorio Industrias de Látex, S. A.